Dedekindsche Psi-Funktion
aus Wikipedia, der freien Enzyklopädie
Dies ist die aktuelle Version dieser Seite, zuletzt bearbeitet am 28. Januar 2021 um 20:01 Uhr durch imported>Aka(568) (https, Kleinkram).
Die Dedekindsche ψ-Funktion ist eine von mehreren nach Richard Dedekind benannten zahlentheoretischen Funktionen. Es handelt sich um eine multiplikative Funktion, sie ist durch
definiert. Das Produkt erstreckt sich über alle Primteiler von
Werte
Nach Definition des leeren Produkts ist
Für die nächsten beiden natürlichen Zahlen ergibt sich:
Die Folge der Funktionswerte geht weiter mit 6, 6, 12, 8, 12, 12, 18, 12, 24, ….[1]
Eigenschaften
- Die -Funktion nimmt nur positive natürliche Zahlen als Werte an. Für alle hinreichend großen ist größer als und gerade:
- Für Primzahlen gilt:
- Dabei ist die Eulersche Phi-Funktion, die für jede positive natürliche Zahl die Anzahl der zu teilerfremden natürlichen Zahlen angibt, die nicht größer als sind.
- Die -Funktion kann auch durch
- für Potenzen von Primzahlen mit positiven natürlichen Hochzahlen und der Festlegung, dass multiplikativ ist, charakterisiert werden. Der Wert für ein beliebiges ergibt sich dann aus der Primfaktorzerlegung von
- Mit der Riemannschen Zeta-Funktion gilt:
Weblinks
- Eric W. Weisstein: Dedekind Function. In: MathWorld (englisch).
- J. Chidambaraswamy: Generalized Dedekind psi functions with respect to a polynomial. II. In: Pacific J. Math. Vol. 65, Nr. 1(1976), S. 19–27.