Newmark-beta-Verfahren

aus Wikipedia, der freien Enzyklopädie
Dies ist die aktuelle Version dieser Seite, zuletzt bearbeitet am 18. November 2021 um 13:54 Uhr durch imported>Orthographus(3348819) (Komma).
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)

Newmark-beta-Verfahren sind Methoden zur impliziten numerischen Integration von Differentialgleichungen. Die Verfahren gehören zu den Einschrittverfahren, da zur Berechnung der Werte zur Zeit nur die Werte des vorangegangenen Zeitschritts zur Zeit benötigt werden. Dabei werden zwei Parameter und eingeführt, mit denen die Stabilität und die Genauigkeit des Verfahrens gesteuert werden. Die Verfahrensklasse ist in der numerischen Analyse der Dynamik von Festkörpern wie in der Finite-Elemente-Methode weit verbreitet. Benannt ist sie nach Nathan M. Newmark, der sie 1959 für die Anwendung in der Strukturdynamik entwickelte.[1]

Herleitung

Annahme linearer oder konstanter Beschleunigung

Im Zeitintervall , in dem eine Lösung einer Differentialgleichung zweiter Ordnung in der Zeit gesucht wird, sei eine streng monoton steigende Folge von Zeitpunkten vorgegeben, zu denen die Lösung berechnet werden soll. Der Wert der Variable , ihre Rate und Beschleunigung seien zur Zeit bekannt. Die Beschleunigung wird im Intervall linear interpoliert, siehe Bild:

(I)    

worin eine Näherungslösung der gesuchten Funktion bezeichnet. Integration über die Zeit liefert mit :

(II)    

(III)    

Mit

   und   

sind diese Formeln für lineare Systeme exakt und liefern das lineare Beschleunigungsverfahren. Die von Newmark ursprünglich angegebenen Werte

   und   

entsprechen dem #Konstante Durchschnittsbeschleunigungsverfahren mit

.

Unter der Voraussetzung, dass die Extremwerte der Beschleunigung im Intervall an den Grenzen des Intervalls auftreten, stellen die Integrale in Gleichungen (II) und (III) eine abgebrochene Taylorreihe mit Restglied dar, wobei mit und andere Approximationen gefunden werden. So können auch andere Werte für die Konstanten und motiviert werden.

Start der Berechnung

Der Newmark-Algorithmus startet zur Zeit mit . Zumeist wird angenommen, dass für die Beschleunigungen verschwinden. Mit dieser Annahme ist der Algorithmus unter Vorgabe der Anfangswerte Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x_{0} } und Anfangsgeschwindigkeit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \dot{x}_{0} } selbststartend, d. h. die Anfangsbeschleunigungen brauchen nicht in einem ersten Schritt berechnet zu werden.

Aktualisierung der Variablen

Mit dem Newmark-Algorithmus werden aus gegebenen Werten Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x_n,\dot{x}_n } und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \ddot{x}_n } zur Zeit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle t_n } die entsprechenden Werte zur Zeit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle t_{n+1} } berechnet. Die im Intervall Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle [t_n, t_{n+1}]} liegenden Werte können mit den Gleichungen (I) bis (III) interpoliert werden. Mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle t=t_{n+1} } und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \ddot{x}^{h}(t_{n+1})=\ddot{x}_{n+1} } bekommt man aus Gleichungen (II) und (III):

(IV)     Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \dot{x}^{h}(t_{n+1}) =\dot{x}_{n+1}=\dot{x}_n+\Delta t[(1-\gamma )\ddot{x}_n+\gamma \ddot{x}_{n+1}] } ,

(V)     Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x^{h}(t_{n+1})=x_{n+1} =x_n+\Delta t\dot{x}_n+\Delta t^2\left[\left(\frac{1}{2}-\beta \right)\ddot{x}_n+\beta \ddot{x}_{n+1}\right] } .

Die beiden Gleichungen (IV) und (V) enthalten drei Unbekannte Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x_{n+1},\dot{x}_{n+1}} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \ddot{x}_{n+1} } . Die dritte zum Abschluss benötigte Gleichung liefert die zu lösende Differentialgleichung.

Bei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \beta \ne 0 } kann auch Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x_{n+1} } als primäre Unbekannte gewählt werden:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \ddot{x}_{n+1} = \frac{1}{\beta\Delta t^2} (x_{n+1}-x_n) - \frac{1}{\beta\Delta t}\dot{x}_n -\frac{\frac{1}{2}-\beta}{\beta}\ddot{x}_n }
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \dot{x}_{n+1} = \frac{\gamma}{\beta\Delta t} (x_{n+1}-x_n) +\left(1-\frac{\gamma}{\beta}\right) \dot{x}_n +\Delta t\frac{\beta-\frac{1}{2}\gamma}{\beta}\ddot{x}_n } .

Sind einmal die Werte Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x_{n+1},\dot{x}_{n+1}} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \ddot{x}_{n+1} } berechnet, wird der Zähler Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n} inkrementiert und die Berechnung fortgesetzt, bis das Ende des interessierenden Zeitintervalls erreicht ist.

Spezialfälle

Konstante Durchschnittsbeschleunigungsverfahren

Die ursprüngliche Form des Newmark-Verfahrens entspricht einer konstanten mittleren Beschleunigung

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \ddot{x}^{h}(t)=\frac{1}{2}(\ddot{x}_{n+1}+\ddot{x}_n) }

mit der man in den obigen Formeln (IV) und (V)

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \gamma =\frac{1}{2} } und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \beta =\frac{1}{4} }

bekommt.

Gleichung Folgerung
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \dot{x}^{h}(t) =\dot{x}_n+\int_{t_n}^t \ddot{x}^{h}(\tau )\mathrm{d}\tau =\dot{x}_n+\frac{\Delta t}2(\ddot{x}_n+\ddot{x}_{n+1}) } Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \gamma =\frac{1}{2} }
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x_n+\int_{t_n}^t\dot{x}^{h}\mathrm{d}\tau =x_n+\int_{t_n}^t \left( \dot{x}_n+\frac{\tau -t_n}2(\ddot{x}_n+\ddot{x}_{n+1})\right)\mathrm{d}\tau =x_n+\Delta t\dot{x}_n+\frac{\Delta t^2}{4}(\ddot{x}_n+\ddot{x}_{n+1}) } Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \beta =\frac{1}{4} }

Zentrale Differenzenquotienten

Die zentralen Differenzenquotienten

(VI)    Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \dot{x}_n=\frac{1}{2\Delta t}(x_{n+1}-x_{n-1}) }

(VII)     Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \ddot{x}_n=\frac{1}{\Delta t^2}(x_{n+1}-2x_n+x_{n-1}) }

entsprechen den obigen Formeln (IV) und (V) mit

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \gamma =\frac{1}{2} } und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \beta =0 } .
Gleichung Folgerung
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \begin{array}{lcl} \ddot{x}_n &=& \frac{1}{\Delta t^2}(x_{n+1}-2x_n+x_{n-1}) \\[1ex] \rightarrow x_{n-1} &=& \Delta t^2\ddot{x}_n-x_{n+1}+2x_n \\[1ex] \dot{x}_n &=& \frac{1}{2\Delta t}(x_{n+1}-x_{n-1}) \\[1ex] \rightarrow \Delta t\dot{x}_n &=& \frac{1}{2}(x_{n+1}-x_{n-1}) =x_{n+1}-\frac{\Delta t^2}2\ddot{x}_n-x_n \\[1ex] \rightarrow x_{n+1} &=& x_n+\Delta t\dot{x}_n+\frac{\Delta t^2}2\ddot{x}_n \end{array} } Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \beta =0 }
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \begin{array}{lcl} \frac{\Delta t}2\ddot{x}_n &=& \frac{1}{2\Delta t}(x_{n+1}-2x_n+x_{n-1}) \\[1ex] \frac{\Delta t}2\ddot{x}_{n+1}&=& \frac{1}{2\Delta t}(x_{n+2}-2x_{n+1}+x_n) \\[2ex] \dot{x}_n &=& \frac{1}{2\Delta t}(x_{n+1}-x_{n-1}) \\[1ex] \dot{x}_{n+1} &=& \frac{1}{2\Delta t}(x_{n+2}-x_n) \\[1ex] \rightarrow \frac{\Delta t}2(\ddot{x}_n+\ddot{x}_{n+1}) &=& \frac{1}{2\Delta t}(x_{n+2}-x_n-x_{n+1}+x_{n-1}) =\dot{x}_{n+1}-\dot{x}_n \\[1ex] \rightarrow \dot{x}_{n+1} &=& \dot{x}_n+\frac{\Delta t}2(\ddot{x}_n+\ddot{x}_{n+1}) \end{array} } Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \gamma =\frac{1}{2} }

Explizite Zeitintegration

Das explizite Zeitintegrationsverfahren gehört nicht zur Familie der (impliziten!) Newmark-beta Algorithmen und wird hier nur zu Vergleichszwecken angegeben. Die obigen Formeln (VI) und (VII) für die zentralen Differenzen sind äquivalent zu

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \dot{x}_{n+1/2}=\frac{1}{\Delta t}(x_{n+1}-x_n) }
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \ddot{x}_n=\frac{1}{\Delta t}(\dot{x}_{n+1/2}-\dot{x}_{n-1/2}) } .

Hier fällt auf, dass die Geschwindigkeiten immer in der Mitte der Zeitintervalle berechnet werden. Mit der Annahme

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \begin{array}{lcl} \dot{x}_{n+1} &\approx& \dot{x}_{n+1/2}=\dot{x}_{n-1/2}+\Delta t\ddot{x}_n \\ x_{n+1} &=& x_n+\Delta t\dot{x}_{n+1/2} =x_n+\Delta t(\dot{x}_{n-1/2}+\Delta t\ddot{x}_n) \end{array} }

können die Werte Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x_{n+1} } und die Geschwindigkeiten Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \dot{x}_{n+1} } zum Zeitpunkt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle t_{n+1} } auf bereits bekannte Ergebnisse Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x_n,\dot{x}_{n-1/2},\ddot{x}_n } zurückgeführt werden und die Differentialgleichung liefert die Bestimmungsgleichung für die nunmehr einzige Unbekannte Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \ddot{x}_{n+1} } .

Beispiel

Zeitintegration mit Algorithmen der Newmark Familie

Eine Schwingung gehorche in Abwesenheit einer Erregung der homogenen Differentialgleichung

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \ddot{x}(t)+x(t)=0 } .

Mit den Anfangsbedingungen

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x(t=0)=x_{0}=0 }
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \dot{x}(t=0)=\dot{x}_{0}=1 }

hat die Differentialgleichung die analytische Lösung

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x(t) = \sin(t) }

zu der die Anfangsbeschleunigung

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \ddot{x}(t=0)=-\sin (0)=0 }

gehört. Die Differentialgleichung liefert die Gleichung für die primäre Unbekannte Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \ddot{x}_{n+1} }  :

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \ddot{x}_{n+1}+x_{n+1}=0\rightarrow \ddot{x}_{n+1}=-x_{n+1} }

Die Zeitintegration mit dem Newmark-Verfahren ergibt die Gleichungen für die Werte Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x_{n+1} } und Raten Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \dot{x}_{n+1} } aus der Tabelle

Parameter Aktualisierungsvorschrift
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \gamma =\frac{1}{2},\;\beta =\frac{1}{6} } Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \begin{array}{lcl} x_{n+1} &=& x_n+\Delta t\dot{x}_n + \frac{\Delta t^2}{6}(2\ddot{x}_n-x_{n+1}) \rightarrow x_{n+1} = \frac{6 x_n+6\Delta t\dot{x}_n+2\Delta t^2\ddot{x}_n}{6+\Delta t^2} \\[1ex] \dot{x}_{n+1} &=& \dot{x}_n+\frac{\Delta t}2(\ddot{x}_n-x_{n+1}) \end{array} }
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \gamma =\frac{1}{2},\;\beta =\frac{1}{4} } Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \begin{array}{lcl} x_{n+1} &=& x_n+\Delta t\dot{x}_n+\frac{\Delta t^2}{4}(\ddot{x}_n-x_{n+1}) \rightarrow x_{n+1} = \frac{4x_n+4\Delta t\dot{x}_n+\Delta t^2\ddot{x}_n}{4+\Delta t^2} \\[1ex] \dot{x}_{n+1} &=& \dot{x}_n+\frac{\Delta t}2(\ddot{x}_n-x_{n+1}) \end{array} }
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \gamma =\frac{1}{2},\;\beta =0 } Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \begin{array}{lcl} x_{n+1} &=& x_n+\Delta t\dot{x}_n+\frac{\Delta t^2}2\ddot{x}_n \\[1ex] \dot{x}_{n+1} &=& \dot{x}_n+\frac{\Delta t}2(\ddot{x}_n-x_{n+1}) \end{array} }
explizit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \begin{array}{lcl} \dot{x}_{n+1} &=& \dot{x}_{n+1/2}=\dot{x}_{n-1/2}+\Delta t\ddot{x}_n \\[1ex] x_{n+1} &=& x_n+\Delta t\dot{x}_{n-1/2}+\Delta t^2\ddot{x}_n \end{array} }

Die Lösungen im Intervall Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle t \in [0,10\pi] } und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Delta t=0,2 } haben den Verlauf im Bild. Die mittlere Abweichung

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle e = \sqrt{\frac{\sum_{n=1}^{159}{(x_n-\sin (t_n))}^2}{159}} }

gibt die Tabelle:

Verfahren Mittlere Abweichung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle e}
Lineares Beschleunigungsverfahren 0.021778594324355638
Zentrales Differenzenverfahren 0.022202937295615111
Konstante mittlere Beschleunigung 0.043283257071468406
Explizites Verfahren 0.022202937295615576

Literatur

  • Robert Gasch, Klaus Knothe, Robert Liebich: Strukturdynamik, Springer Verlag 2012, ISBN 978-3-540-88977-9
  • T. Belytschko, T.J.R. Hughes (Hrsg.): Computational methods for transient analysis. North-Holland 1986. ISBN 9780444864796

Einzelnachweise

  1. Newmark, Nathan M.: A method of computation for structural dynamics. In: Journal of Engineering Mechanics. 85 (EM3). ASCE, 1959, S. 67–94.