Pick–Matrix

aus Wikipedia, der freien Enzyklopädie
Dies ist die aktuelle Version dieser Seite, zuletzt bearbeitet am 10. Dezember 2021 um 06:21 Uhr durch imported>FerdiBf(497820) (→‎Interpolationsproblem: Wortstellung).
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)

Pick–Matrix ist ein mathematischer Begriff, der in dem mathematischen Teilgebiet der Analysis Verwendung findet. Hier bezeichnet man eine quadratische Matrix als Pick–Matrix, wenn eine positive natürliche Zahl und dazu paarweise verschiedene komplexe Zahlen und weiter komplexe Zahlen gegeben sind, so dass das jeweilige –Element von die Form

hat.

Der Begriff spielt eine wesentliche Rolle im Zusammenhang mit dem sogenannten Interpolationsproblem von Pick und Nevanlinna.[1]

Interpolationsproblem

Das Interpolationsproblem von Pick und Nevanlinna – oder auch Nevanlinna–Pick–Interpolationsproblem (englisch Nevanlinna–Pick interpolation problem) – geht auf wissenschaftliche Publikationen der beiden Mathematiker Georg Pick und Rolf Nevanlinna aus den Jahren 1916 bzw. 1919 zurück. Es behandelt die folgende Fragestellung:[2][3]

Gegeben seien paarweise verschiedene komplexe Zahlen und weiter komplexe Zahlen .
Zu diesen Zahlen wird eine Funktion gesucht, welche die folgenden beiden Nebenbedingungen erfüllen soll:
(i)
(ii)

Interpolationssatz

Es gilt zu dem genannten Problem der folgende Interpolationssatz von Pick und Nevanlinna:[1][3]

Das Interpolationsproblem von Pick und Nevanlinna ist lösbar genau dann, wenn die zu diesen und gehörige Pick-Matrix nichtnegativ-definit ist.

Andere Definition

In einer im Jahre 1974 erschienenen Monographie von William F. Donoghue, Jr., wird der Begriff der Pick–Matrix in einer anderen Weise definiert.[4] Hier bezeichnet man eine quadratische Matrix als Pick–Matrix, wenn eine positive natürliche Zahl sowie komplexe Zahlen und weiter eine Funktion vorliegen, so dass das jeweilige –Element von die Form

hat.

Erläuterungen

  1. ist die offene Einheitskreisscheibe.
  2. ist die Einheitskreislinie (oder auch Kreisgruppe).
  3. ist der zu den beschränkten holomorphen Funktionen gehörige Hardy-Raum.
  4. ist die (offene) obere Halbebene.
  5. Der Interpolationssatz von Pick und Nevanlinna lässt sich auf mehreren Wegen herleiten. So gab etwa Donald E. Marshall im Jahre 1975 einen elementaren konstruktiven Beweis. Zuvor war im Jahre 1967 schon von Donald Erik Sarason gezeigt worden, dass der Pick–Nevanlinna'sche Interpolationssatz sich auch als Folgerung aus einem von Sarason vorgelegten – grundlegenden! – Theorem im Rahmen der Theorie der beschränkten Operatoren auf Hardy-Räumen ergibt.[3]

Literatur

Einzelnachweise

  1. a b Yutaka Yamamoto: From Vector Spaces to Function Spaces 2012, S. 196 ff.
  2. Yamamoto, op. cit., S. 198
  3. a b c Robert B. Burckel: An Introduction to Classical Complex Analysis. Vol. 1. 1979, S. 215
  4. William F. Donoghue, Jr.: Monotone Matrix Functions and Analytic Continuation 1974, S. 34 ff.

Anmerkungen

  1. Yutaka Yamamoto, geboren am 29. März 1950 ist ein japanischer Mathematiker, der der vor allem auf den Gebieten der Systemtheorie und Kontrolltheorie arbeitet.