Massenwirkungsgesetz
Das Massenwirkungsgesetz (Abkürzung „MWG“) definiert das chemische Gleichgewicht für chemische Reaktionen. Dem Massenwirkungsgesetz zufolge ist das Produkt aus den Aktivitäten der beteiligten Stoffe (potenziert mit den jeweiligen stöchiometrischen Zahlen ) konstant.[1] Die Konstante wird als Gleichgewichts- oder Massenwirkungskonstante bezeichnet.[2] Sind an einer Reaktion Stoffe beteiligt, erhält man:
Hierbei ist das Produktzeichen. Da die stöchiometrischen Zahlen der Ausgangsstoffe negativ sind, werden Massenwirkungsgesetze als Brüche formuliert, wobei die Produktterme den Zähler und die Eduktterme den Nenner bilden. Für eine Reaktion mit der unter Verwendung des Gleichgewichtspfeils formulierten stöchiometrischen Reaktionsgleichung
- ,
an der die Ausgangsstoffe A, B … M und die Produkte N, O … Z beteiligt sind, nimmt das Massenwirkungsgesetz daher folgende Form an:
Die Gleichgewichtskonstante ist eine intensive dimensionslose thermodynamische Zustandsgröße und definiert diejenige stoffliche Zusammensetzung, für die das unter den jeweiligen Reaktionsbedingungen relevante thermodynamische Potential des reagierenden Systems ein Minimum aufweist. Stellt sich der durch das Massenwirkungsgesetz definierte Gleichgewichtszustand ein, wird die maximale Zunahme der Entropie, die durch Zustandsänderungen im Reaktionsgemisch realisierbar ist, erreicht.
Geschichte
Das Massenwirkungsgesetz wurde von den norwegischen Chemikern Cato Maximilian Guldberg und Peter Waage experimentell ermittelt und 1864 in Norwegisch sowie 1867 in Französisch (mit ihren experimentellen Daten und einem modifizierten Gesetz) erstmals veröffentlicht.[3] Ihre Veröffentlichung fand lange keine große Beachtung. Der Ire John Hewitt Jellett kam 1873 zu ähnlichen Schlussfolgerungen,[4] ebenso wie 1877 Jacobus Henricus van ’t Hoff. Insbesondere nach den Veröffentlichungen von van ’t Hoff (aber auch von anderen wie August Friedrich Horstmann) hatten Guldberg und Waage den Eindruck, dass ihre Arbeit nicht genug bekannt sei.[5] Nachdem sie 1879 im Journal für Praktische Chemie eine ausführlichere Darlegung in deutscher Sprache veröffentlicht hatten, erkannte van ’t Hoff deren Priorität an.
Thermodynamische Aspekte
Thermodynamische Definition der Gleichgewichtskonstante
Im thermodynamischen Gleichgewicht ist die Änderung des (zur Beschreibung des Systems angebrachten) thermodynamischen Potentials null (vergleiche Reaktionsquotient). Die Gleichgewichtskonstante hängt dann lediglich von den gewählten (willkürlichen, aber festen) Referenzzuständen (o) der beteiligten Stoffe ab. Der Referenzzustand (o) kann entsprechend dem betrachteten Reaktionsszenario frei gewählt werden und ist nicht mit sogenannten Standardzuständen unter Standardbedingungen zu verwechseln.[6][7] Die Lage des Gleichgewichtes sowie der Wert der Gleichgewichtskonstante hängen dabei vom gewählten Referenzzustand ab.
Da thermodynamische Gleichgewichtszustände unabhängig vom Weg sind, auf dem diese erreicht werden, ist es für die thermodynamische Gültigkeit des Massenwirkungsgesetzes nicht erforderlich, die unabhängigen Zustandsvariablen des relevanten thermodynamischen Potentials während des gesamten Reaktionsverlaufes konstant zu halten.
In der Praxis sind vor allem zwei Szenarien von Bedeutung:
Reaktionen, die in Autoklaven durchgeführt werden, wie etwa Solvothermalsynthesen, finden bei konstantem Volumen und in der Regel bei konstanter Temperatur statt, wohingegen der Druck variabel ist. Wird eine Reaktion bei konstanter Temperatur, konstantem Volumen und variablem Druck durchgeführt, ist die freie Energie (Helmholtz-Potential) F das relevante thermodynamische Potential, da neben der sich im Verlauf der chemischen Reaktion verändernden stofflichen Zusammensetzung des reagierenden Systems Temperatur und Volumen die unabhängigen Zustandsvariablen der freien Energie sind. Das Massenwirkungsgesetz definiert dann die stoffliche Zusammensetzung des reagierenden Systems, für die die freie Energie minimal wird und die damit den thermodynamischen Gleichgewichtszustand darstellt. Für eine chemische Reaktion, die in einem durch ein konstantes Volumen und eine konstante Temperatur gekennzeichneten Referenzzustand (o) durchgeführt wird und deren beteiligte Komponenten in diesem Referenzzustand die molaren freien Bildungsenergien besitzen, wird die molare freie Reaktionsenergie gleich:
Die Gleichgewichtskonstante ist dann unter Verwendung der absoluten Temperatur wie folgt durch die molare freie Reaktionsenergie des Referenzzustandes definiert:
Viele chemische Reaktionen werden in offenen Systemen durchgeführt, so dass Druckausgleich zwischen dem reagierenden System und der Umgebung erfolgen kann. Somit kann angenommen werden, dass die betrachtete Reaktion unter einem konstanten, dem Umgebungsdruck entsprechenden Druck durchgeführt wird, während das Volumen des reagierenden Systems variabel ist. Wird eine Reaktion bei konstantem Druck, konstanter Temperatur und variablem Volumen durchgeführt, ist die freie Enthalpie (Gibbs-Energie) das relevante thermodynamische Potential, da neben der sich im Verlauf der chemischen Reaktion verändernden stofflichen Zusammensetzung des reagierenden Systems Druck und Temperatur die unabhängigen Zustandsvariablen der freien Enthalpie sind. In diesem Fall definiert das Massenwirkungsgesetz die stoffliche Zusammensetzung des reagierenden Systems, für die die freie Enthalpie minimal wird und die damit den thermodynamischen Gleichgewichtszustand darstellt. Für eine chemische Reaktion, die in einem durch einen konstanten Druck und eine konstante Temperatur gekennzeichneten Referenzzustand (o) durchgeführt wird und deren beteiligte Komponenten in diesem Referenzzustand die molaren freien Bildungsenthalpien besitzen, wird die molare freie Reaktionsenthalpie gleich:
Die Gleichgewichtskonstante ist dann wie folgt durch die molare freie Reaktionsenthalpie der Referenzzustände definiert:
Wird ein chemisches Gleichgewicht durch die Änderung der Konzentration eines an der betrachteten Reaktion beteiligten Stoffes – und damit seiner Aktivität – gestört, müssen sich gemäß dem Prinzip vom kleinsten Zwang nach Henry Le Chatelier die Aktivitäten (und damit die Konzentrationen) der anderen an der Reaktion beteiligten Stoffe so ändern, dass das Massenwirkungsgesetz erfüllt bleibt. Die Gleichgewichtskonstante ist somit unabhängig von den Ausgangskonzentrationen der an der betrachteten Reaktion beteiligten Stoffe. Als thermodynamische Zustandsgröße hängt die Gleichgewichtskonstante nicht vom Reaktionsmechanismus oder von kinetischen Größen wie Geschwindigkeitskonstanten und Reaktionsgeschwindigkeiten ab.
Herleitung
Im Folgenden[8] wird exemplarisch angenommen, dass die betrachtete Reaktion bei einem durch einen konstanten Druck sowie eine konstante Temperatur gekennzeichneten Referenzzustand () durchgeführt wird, so dass die freie Enthalpie das relevante thermodynamische Potential ist. Sinngemäß lässt sich die unten skizzierte Herleitung auf jedes andere thermodynamische Potential anwenden.
sei der Beitrag eines Stoffes zur extensiven freien Gesamtenthalpie des betrachteten Systems. Sofern Druck, Temperatur und die Stoffmengen aller weiteren anwesenden Stoffe konstant gehalten werden, ist das chemische Potential des Stoffes gleich der Änderung pro Änderung der Stoffmenge des Stoffes :
Die Menge der Formelumsätze einer chemischen Reaktion in Mol ist durch die Umsatzvariable gegeben, dem Quotienten aus und der stöchiometrischen Zahl des Stoffes :
Ersetzt man im Ausdruck für das chemische Potential durch Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \nu_i \cdot \mathrm d \xi} und löst nach Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathrm d G_i} auf, erhält man:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathrm d G_i = \nu_i \cdot \mu_i \cdot \mathrm d \xi}
Enthält ein Reaktionsgemisch insgesamt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle z} verschiedene Stoffe, gilt für die Änderung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathrm{d}G_\mathrm{sys}} der freien Gesamtenthalpie Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle G_\mathrm{sys}} des reagierenden Systems:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathrm d G_\mathrm{sys} = \sum_{i=1}^z \mathrm d G_i = \sum_{i=1}^z (\nu_i \cdot \mu_i \cdot \mathrm{d} \xi) = \sum_{i=1}^z (\nu_i \cdot \mu_i) \cdot \mathrm{d} \xi}
Dividieren durch Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathrm d \xi} ergibt:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \left( \frac{\partial G_\mathrm{sys}}{\partial \xi}\right)_{T,p} = \sum_{i=1}^z (\nu_i \cdot \mu_i) }
Unter den gegebenen Reaktionsbedingungen für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle T,p} ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \frac{\partial G_\mathrm{sys}}{\partial \xi}} die Änderung der freien Systementhalpie Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle G_\mathrm{sys}} pro Reaktionsumsatz.
Das chemische Potential Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mu_i} eines Stoffes Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle i} in einer Reaktionsmischung kann bezogen auf das chemische Potential Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mu_i^{\circ}} des reinen Stoffes Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle i} für den Referenzzustand (Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \circ} ) ausgedrückt werden, der für das betrachtete Reaktionsszenario maßgeblich ist:[9][10]
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mu_i(a_i) = \mu_i^{\circ} + R \cdot T \cdot \ln a_i}
Hierbei ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a_i:=\exp\left(\frac{\mu_i-\mu_i^{\circ}}{RT}\right)} die relative chemische Aktivität mit der Gaskonstante Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle R} und der absoluten Temperatur Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle T} .
Die Kombination mit obigem Ausdruck für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \left( \partial G_\mathrm{sys}/{\partial \xi}\right)_{T,p} } ergibt:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \left( \frac{\partial G_\mathrm{sys}}{\partial \xi}\right)_{T,p} = \sum_{i=1}^z (\nu_i \cdot \mu_i^o + \nu_i \cdot R \cdot T \cdot \ln a_i) = \sum_{i=1}^z \nu_i \cdot \mu_i^o + R \cdot T \cdot \sum_{i=1}^z \nu_i \cdot \ln a_i}
Die Summe Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \textstyle \sum_{{i}=1}^z {\nu_i} \cdot \mu_i^{\circ}=:\Delta_R G^{\circ}} ist gleich der molaren freien Reaktionsenthalpie Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Delta_R G^{\circ}} für den Referenzzustand. Man erhält:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \left( \frac{\partial G_\mathrm{sys}}{\partial \xi}\right)_{T,p} = \Delta_R G^{\circ} + R \cdot T \cdot \sum_{i=1}^z \nu_i \cdot \ln a_i}
Während Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Delta_R G^{\circ}} konstant ist, solange Druck und Temperatur nicht verändert werden, hängt die Summe Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \textstyle \sum_{{i}=1}^z \nu_i \cdot \ln a_i} von den jeweils aktuellen relativen Aktivitäten Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a_i} ab. Durch Anwendung der einschlägigen Logarithmusregel lässt sich die Summe Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \textstyle \sum_{{i}=1}^z \nu_i \cdot \ln a_i} in den Logarithmus des Produkts Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \textstyle \prod_{i=1}^z a_i^{{\nu}_i}} umwandeln, welches als Reaktionsquotient Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle Q_r} bezeichnet wird:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \sum_{i=1}^z \nu_i \cdot \ln a_i = \ln\left(\prod_{i=1}^z a_i^{{\nu}_i}\right) = \ln Q_r}
Somit ergibt sich:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \left( \frac{\partial G_\mathrm{sys}}{\partial \xi}\right)_{T,p} = \Delta_R G^{\circ} + R \cdot T \cdot \ln Q_r}
Solange im Verlauf der betrachteten Reaktion die transienten relativen Aktivitäten der Edukte größer als die relativen Gleichgewichtsaktivitäten der Edukte sind, ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle Q_r} kleiner als die Gleichgewichtskonstante Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle K} , und es gilt:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Delta_R G^{\circ} + R \cdot T \cdot \ln Q_r < 0}
Folglich nimmt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle G_\mathrm{sys}} mit Fortlaufen der Reaktion ab:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \left( \frac{\partial G_\mathrm{sys}}{\partial \xi}\right)_{T,p} < 0}
Im chemischen Gleichgewicht nimmt die freie Gesamtenthalpie Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle G_\mathrm{sys}} des reagierenden Systems den kleinstmöglichen erreichbaren Wert an. Im chemischen Gleichgewicht weist die Funktion Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle G_\mathrm{sys}(\xi)_{T,p}} somit ein Minimum auf. Der partielle Differentialquotient Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (\partial G_\mathrm{sys}/\partial \xi)_{T,p}} muss demnach im chemischen Gleichgewicht gleich null sein:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \left( \frac{\partial G_\mathrm{sys}}{\partial \xi}\right)_{T,p} = \Delta_R G^{\circ} + R \cdot T \cdot \ln Q_r = 0}
Der Reaktionsquotient Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle Q_r} ist im chemischen Gleichgewicht allein durch die freie Reaktionsenthalpie im Referenzzustand Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Delta_R G^{\circ}} gegeben und entspricht damit der Gleichgewichtskonstanten Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle K} :
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Delta_R G^{\circ} = - R \cdot T \cdot \ln Q_r = - R \cdot T \cdot \ln K}
Dieser Ausdruck stellt den Zusammenhang zwischen der molaren freien Reaktionsenthalpie Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Delta_R G^{\circ}} und der stofflichen Zusammensetzung des Reaktionsgemisches im chemischen Gleichgewicht dar. Auflösen nach Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle K} ergibt entsprechend:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle K = \exp \bigg[- \frac {\Delta_R G^{\circ}}{R \cdot T}\bigg] = \prod_{i=1}^z a_i^{{\nu}_i}.}
Da Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle K} von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Delta_R G^{\circ}} abhängt, hängt auch der Zahlenwert der Gleichgewichtskonstante vom jeweils angewendeten Referenzzustand (Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \circ} ) ab.
Druck- und Temperaturabhängigkeit der Gleichgewichtskonstante
Da sich das Massenwirkungsgesetz auf ein unter den jeweiligen Reaktionsbedingungen anzuwendendes thermodynamisches Potential bezieht, ist die Gleichgewichtskonstante abhängig von den Zustandsgrößen, die die unabhängigen Zustandsvariablen des betreffenden thermodynamischen Potentials darstellen. Ist das relevante thermodynamische Potential die freie Enthalpie, ändert sich der Wert der Gleichgewichtskonstante, wenn die betrachtete Reaktion bei unverändertem Druck und einer veränderten konstanten Temperatur durchgeführt wird. Die Temperaturabhängigkeit der Gleichgewichtskonstante bei konstantem Druck lässt sich durch die van-’t-Hoff-Gleichung beschreiben beziehungsweise durch van-'t-Hoffsche Reaktionsisobaren darstellen. Ebenso ändert sich der Wert der Gleichgewichtskonstanten, wenn die betrachtete Reaktion bei unveränderter Temperatur und verändertem konstanten Druck durchgeführt wird. Zur Beschreibung der Druckabhängigkeit der Gleichgewichtskonstante Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle K} bei konstanter Temperatur in kondensierten Phasen wird das molare Reaktonsvolumen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Delta_R \overline{V}} herangezogen:[11][12]
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \left(\frac{\partial \ln K}{\partial p}\right)_{T}=-\frac{\Delta_R \overline{V}}{RT}}
Die Druckabhängigkeit der Gleichgewichtskonstante ist bei Reaktionen, die in kondensierten Phasen stattfinden, jedoch typischerweise sehr schwach und wird häufig vernachlässigt.[13] Ist das relevante thermodynamische Potential die freie Energie, wird die Temperaturabhängigkeit der Gleichgewichtskonstante bei konstantem Volumen durch die van-’t-Hoff’sche Reaktionsisochore beschrieben.[14]
Massenwirkungsgesetz als Spezialfall in der Reaktionskinetik
Gemäß der Theorie des Übergangszustandes müssen im Verlauf elementarer Reaktionsereignisse Ausgangsstoffe und Produkte trennende Potentialbarrieren überwunden werden, die sich auf der makroskopischen Ebene am zweckmäßigsten durch das jeweils anzuwendende thermodynamische Potential beschreiben lassen. Reversible Reaktionen zeichnen sich dadurch aus, dass neben Hinreaktionen, die zur Bildung der Reaktionsprodukte aus den Ausgangsstoffen führen, auch Rückreaktionen, die zur Bildung der Ausgangsstoffe aus den Reaktionsprodukten führen, in nennenswertem Umfang stattfinden. Werden beispielsweise Druck und Temperatur konstant gehalten, repräsentiert die molare freie Aktivierungsenthalpie Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Delta {G^{\ddagger}}^{\circ}_\mathrm{hin}} die Höhe der bei der Hinreaktion für die Umwandlung der Ausgangsstoffe in die Produkte zu überwindenden Potentialbarriere (bezogen auf den Referenzzustand). Entsprechend repräsentiert die molare freie Aktivierungsenthalpie Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Delta {G^{\ddagger}}^{\circ}_\text{rück}} die Höhe der bei der Rückreaktion für die Umwandlung der Produkte in die Ausgangsstoffe zu überwindenden Potentialbarriere. Hin- und Rückreaktion können, müssen aber nicht entlang derselben Reaktionstrajektorie verlaufen. Sofern Hin- und Rückreaktion exakt entlang derselben Reaktionstrajektorie in jeweils entgegengesetzter Richtung ablaufen, gilt mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Delta_\mathrm{R} G^{\circ}} als molarer freier Reaktionsenthalpie der Hinreaktion für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Delta {G^{\ddagger}}^{\circ}_\text{rück}} (siehe Kinetik (Chemie), Abschnitt Freie Aktivierungsenthalpien und thermodynamisches Gleichgewicht):
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Delta_\mathrm{R} G^{\circ} = \Delta {G^{\ddagger}}^{\circ}_\mathrm{hin}- \Delta {G^{\ddagger}}^{\circ}_\text{rück} }
Die Kinetik einer betrachteten Reaktion wird durch ein Geschwindigkeitsgesetz beschrieben, in das das thermodynamische Aktivierungspotential mittels einer Geschwindigkeitskonststante eingeht. Die Geschwindigkeitskonstante der Hinreaktion Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\textstyle k_\mathrm{hin}} , die die Kinetik der Umwandlung der Ausgangsstoffe in die Produkte repräsentiert, hängt von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Delta {G^{\ddagger}}^{\circ}_\mathrm{hin}} wie folgt ab (siehe Abschnitt "Thermodynamische Formulierung" im Artikel "Theorie des Übergangszustandes"):
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle k_\mathrm{hin} = \mathrm{Konstante} \cdot \exp \bigg[-\frac{\Delta {G^{\ddagger}}^{\circ}_\mathrm{hin}}{RT}\Bigg]}
Entsprechend gilt für die Geschwindigkeitskonstante Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\textstyle k_\text{rück}} , die die Kinetik der Umwandlung der Produkte die Ausgangsstoffe durch die Rückreaktion repräsentiert:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle k_\text{rück} = \mathrm{Konstante} \cdot \exp \bigg[-\frac{\Delta {G^{\ddagger}}^{\circ}_\text{rück}}{RT}\Bigg]}
Durch Anwendung des Ausdrucks Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Delta {G^{\ddagger}}^{\circ}_\text{rück} = \Delta {G^{\ddagger}}^{\circ}_\mathrm{hin} -\Delta_\mathrm{R} G^{\circ}} lässt sich Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\textstyle k_\text{rück}} als Funktion von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Delta_\mathrm{R} G^{\circ}} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Delta {G^{\ddagger}}^{\circ}_\mathrm{hin}} darstellen:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle k_\text{rück} = \mathrm{Konstante} \cdot \exp \Bigg[-\frac{\Delta {G^{\ddagger}}^{\circ}_\text{rück}}{RT}\Bigg] = {\rm{Konstante}} \cdot \exp \Bigg[-\frac{\Delta {G^{\ddagger}}^{\circ}_\mathrm{hin} -\Delta_\mathrm{R} G^{\circ}}{RT}\Bigg]}
Für den Quotienten aus Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\textstyle k_\mathrm{hin}} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\textstyle k_\text{rück}} folgt:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \frac{k_\mathrm{hin}}{k_\text{rück}} = \exp \Bigg[-\frac{\Delta {G^{\ddagger}}^{\circ}_\mathrm{hin}}{RT}\Bigg] \cdot \exp \Bigg[-\frac{\Delta {G^{\ddagger}}^{\circ}_\mathrm{hin} -\Delta_\mathrm{R} G^{\circ}}{RT}\Bigg]^{-1} = \exp \Bigg[-\frac{\Delta_\mathrm{R} G^{\circ}}{RT}\Bigg] = K }
Das Verhältnis Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\textstyle \frac{k_\mathrm{hin}}{k_\text{rück}}} ist somit gleich der Gleichgewichtskonstante Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\textstyle K} und wird durch die Referenz freie Reaktionsenthalpie Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Delta_\mathrm{R} G^{\circ}} vorgegeben. Der Zusammenhang zwischen der Gleichgewichtskonstante und den Geschwindigkeitskonstanten der Hin- und Rückreaktion ist thermodynamisch begründet und gilt unabhängig von der Art und Weise, in der die die Reaktionskinetik beschreibenden Geschwindigkeitsgesetze formuliert werden.
Entsprechen für eine reversible Reaktion
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle |\nu_ \mathrm A|\,\mathrm A + |\nu_ \mathrm B|\,\mathrm B \rightleftharpoons \nu_ \mathrm C \,\mathrm C + \nu_ \mathrm D \,\mathrm D }
lassen sich mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle r_\mathrm{hin}} sowie Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle r_\text{rück}} als Reaktionsgeschwindigkeiten der Hin- und Rückreaktion folgende Geschwindigkeitsgesetze formulieren (siehe auch Ratengleichung):[15]
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle r_\mathrm{hin} = k_\mathrm{hin} \cdot a_\text {A}}^{|\nu_\text {A}|} \cdot {a_\text {B}}^{|\nu_\text {B}|}
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle r_\text{rück} = k_\text{rück}\cdot a_\text {C}}^{|\nu_\text {C}|} \cdot {a_\text {D}}^{|\nu_\text {D}|}
Teilt man den Ausdruck für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle r_\text{rück}} durch den Ausdruck für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle r_\mathrm{hin}} , erhält man:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \frac{r_\text{rück}}{r_\mathrm{hin}} = \frac{ {k_\text{rück} \cdot a_\text {C}}^{|\nu_\text {C}|} \cdot {a_\text {D}}^{|\nu_\text {D}|} }{ {k_\text{hin} \cdot a_\text {A}}^{|\nu_\text {A}|} \cdot {a_\text {B}}^{|\nu_\text {B}|} } }
Mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle K = \frac{k_\mathrm{hin}}{k_\text{rück}}} sowie Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle K = \frac{ {a_\text {C}}^{|\nu_\text {C}|} \cdot {a_\text {D}}^{|\nu_\text {D}|} }{ {a_\text {A}}^{|\nu_\text {A}|} \cdot {a_\text {B}}^{|\nu_\text {B}|} } } erhält man:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \frac{r_\text{rück}}{r_\mathrm{hin}} = \frac{1}{K} \cdot K = 1}
Daraus folgt, dass im chemischen Gleichgewicht die Geschwindigkeit der Hinreaktion Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle r_\mathrm{hin}} gleich der Geschwindigkeit der Rückreaktion Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle r_\text{rück}} sein muss:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle r_\text{hin} = r_\text{rück}}
Aufstellung des Massenwirkungsgesetzes mit Stoffmengenkonzentrationen
Die relativen Aktivitäten Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a_i = \frac{c_i}{c^{\circ}} \gamma_i} sind relativ zum Referenzzustand (mit Referenzkonzentration Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle c^{\circ}} ), wobei der Aktivitätskoeffizient Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \gamma_i} für wechselwirkende Systeme ungleich eins ist. Durch Einsetzen der relativen Aktivitäten erhält man
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle K = \prod_{i=1}^z a_i^{{\nu}_i} = \prod_{i=1}^z \left(\frac{c_i}{c^{\circ}} \gamma_i\right)^{{\nu}_i}.}
Unter Vernachlässigung der Teilchenwechselwirkungen – d. h. durch Fordern, dass die Aktivitätskoeffizienten Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \gamma_i\approx 1} – erhält man
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle K \approx \prod_{i=1}^z \left(\frac{c_i}{c^{\circ}} \right)^{{\nu}_i},}
was für verdünnte Lösungen häufig eine gute Näherung ist. Teilweise werden die Referenzkonzentrationen zusätzlich in die Definition einer neuen Gleichgewichtskonstante einbezogen:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle K_c := K \prod_{i=1}^z \left(c^{\circ}\right)^{{\nu}_i} \approx \prod_{i=1}^z c_i^{{\nu}_i}.}
Statt thermodynamisch korrekt mit den Aktivitäten der an der betrachteten Reaktion beteiligten Stoffe kann somit das Massenwirkungsgesetz für Reaktionen in verdünnter Lösung häufig näherungsweise unter Verwendung der Stoffmengenkonzentrationen der beteiligten Stoffe aufgestellt werden. Bei stärker konzentrierten Lösungen können jedoch die Werte der Aktivitätskoeffizienten stark von 1 abweichen, so dass diese Näherung mit Vorsicht zu gebrauchen ist. Die mit Stoffmengenkonzentrationen berechneten Gleichgewichtskonstanten werden zur Unterscheidung von mit Aktivitäten berechneten Gleichgewichtskonstanten mit Kc bezeichnet, wobei der tiefgestellte Index c für Stoffmengenkonzentration steht. Das Massenwirkungsgesetz wird zum Beispiel für die Reaktion
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle |\nu_ \mathrm A|\,\mathrm A + |\nu_ \mathrm B|\,\mathrm B \rightleftharpoons \nu_ \mathrm C \,\mathrm C + \nu_ \mathrm D \,\mathrm D }
unter Verwendung der Stoffmengenkonzentrationen c(A), c(B), c(C) und c(D) der Ausgangsstoffe A und B sowie der Produkte C und D wie folgt formuliert:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle K_c = \frac{c(\mathrm{C})^{\nu_\mathrm{C}} \cdot c(\mathrm{D})^{\nu_\mathrm{D}}} { c(\mathrm{A})^{|\nu_\mathrm{A}|} \cdot c(\mathrm{B})^{|\nu_\mathrm{B}|}}}
Da die stöchiometrischen Zahlen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \nu_\mathrm{A}} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \nu_\mathrm{B}} der Ausgangsstoffe A und B als Exponenten von deren Stoffmengenkonzentrationen c(A) und c(B) definitionsgemäß ein negatives Vorzeichen besitzen, stehen die Produktterme Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle c(\mathrm{A})^{|\nu_\mathrm{A}|}} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle c(\mathrm{B})^{|\nu_\mathrm{B}|}} im Nenner des Ausdrucks für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle K_c} .
Eine mittels der Stoffmengenkonzentrationen erhaltene Gleichgewichtskonstante Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle K_c} hat in der Regel einen anderen Zahlenwert als die entsprechende mittels der Aktivitäten erhaltene Gleichgewichtskonstante. Weiterhin kann Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle K_c} eine Dimension und damit auch eine Einheit besitzen. Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \nu_\mathrm{ges}} sei die Summe aller stöchiometrischer Zahlen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \nu_i} der beteiligten Stoffe Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\textstyle i} einer Reaktion mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\textstyle z} beteiligten Stoffen:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \nu_\mathrm{ges} = \sum_{i=1}^z \nu_i}
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\textstyle L} ist das Dimensionssymbol für Länge, Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\textstyle N} das Dimensionssymbol für die Stoffmenge. Die Dimension der Stoffmengenkonzentration ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle N/L^3} und die Dimension von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle K_c} demzufolge Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (N/L^3)^{\nu_\mathrm{ges} }} . Lediglich wenn Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \nu_\mathrm{ges} = 0} ist, ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle K_c} dimensionslos. Betrachtet man beispielsweise die Synthese von Kaliumhexacyanidoferrat(II) gemäß
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathrm{Fe^{2+} + 6\ CN^- \rightleftharpoons [Fe(CN)_6]^{4-}}} ,
ergibt sich für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle K_c} :
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle K_c = \mathrm{\frac{c([Fe(CN)_6]^{4-})}{c(Fe^{2+}) \cdot c^6(CN^-)}}}
In diesem Beispiel ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \nu_\mathrm{ges} = -1 - 6 + 1 = -6} und die Dimension von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle K_c} gleich Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (N \cdot L^{-3})^{-6} = N^{-6} \cdot L^{18}} . Die Einheit von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle K_c} ist demnach Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathrm m ^{18} \cdot \mathrm {Mol}^{-6}} .
Um eine dimensionslose Form der stoffmengenkonzentrationsbasierten Gleichgewichtskonstante Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle K_c} zu erhalten, kann Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle K_c} durch die Einheitskonzentration Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 1\; \mathrm{Mol} \cdot \mathrm m^{-3}} potenziert mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \nu_\mathrm{ges}} dividiert werden.
Aufstellung des Massenwirkungsgesetzes für homogene Gasgleichgewichte
Für Gasphasenreaktionen wird das Massenwirkungsgesetz häufig mit den Partialdrücken Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\textstyle p_i} der beteiligten Stoffe Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\textstyle i} aufgestellt. Als Symbol für mit Partialdrücken erhaltene Gleichgewichtskonstanten wird Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\textstyle K_p} verwendet. Bei homogenen Gasgleichgewichten mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\textstyle z} beteiligten Komponenten nimmt das Massenwirkungsgesetz entsprechend folgende Form an:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle K_p = \prod_{i=1}^z p_i^{{\nu}_i}}
Bei der Bildung von Iodwasserstoff aus elementarem Wasserstoff und Iod
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathrm{{H_2}_{(g)} + {I_2}_{(g)} \rightleftharpoons 2\ {HI}_{(g)}}}
stellt sich das Gleichgewicht
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle K_p = \frac{p^2 \mathrm{(HI)}}{p \mathrm{(H_2)}\cdot p \mathrm{(I_2)}}}
ein. Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\textstyle K_p} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\textstyle K_c} beziehungsweise die Partialdrücke Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\textstyle p_i} und die Stoffmengenkonzentrationen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\textstyle c_i} lassen sich über die Zustandsgleichung für ideale Gase miteinander verknüpfen:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle p_i V = n_i RT} Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Leftrightarrow p_i = \frac{n_i}{V}RT = c_iRT}
Für die Gleichgewichtskonstante Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\textstyle K_p} bei der Bildung von Iodwasserstoff ergibt sich:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle K_p = \frac{[c \mathrm{(HI)} RT ]^2}{c \mathrm{(H_2)} RT \cdot \ c \mathrm{(I_2)} RT} = \frac{c^2 \mathrm{(HI)}}{c \mathrm{(H_2)} \cdot c \mathrm{(I_2)}} = K_c }
Ist in einem Gasphasengleichgewicht die Teilchenanzahl der Produkte gleich der Teilchenanzahl der Edukte, so kürzt sich Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\textstyle RT} im mit Stoffmengenkonzentrationen formulierten Massenwirkungsgesetz heraus. Betrachtet man jedoch die Reaktion von Schwefeldioxid und Sauerstoff zu Schwefeltrioxid
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathrm{2\ {SO_2}_{(g)} + {O_2}_{(g)} \rightleftharpoons 2\ {SO_3}_{(g)}}} mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle K_p = \frac{p^2 \mathrm{ \mathrm{(SO_3)}}}{p^2 \mathrm{(SO_2)} \cdot p \mathrm{(O_2)}} }
und ersetzt die Drücke durch Stoffmengenkonzentrationen, ergibt sich:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle K_p = \frac{ [c \mathrm{(SO_3)} RT ]^2}{[c \mathrm{(SO_2)} RT]^2 \cdot c \mathrm{(O_2)} RT } = \frac{c^2 \mathrm{ \mathrm{(SO_3)}}}{c^2 \mathrm{(SO_2)} \cdot c \mathrm{(O_2)}} \cdot \frac{1}{RT} = K_c \cdot \frac{1}{RT} }
Die Teilchenzahl vermindert sich bei der Reaktion und ein Faktor Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\textstyle 1/RT} verbleibt im mit Stoffmengenkonzentrationen formulierten Massenwirkungsgesetz.
Betrachtet man die Bildung von Ammoniak im Haber-Bosch-Verfahren gemäß
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathrm{{3\ H_2}_{(g)} + {N_2}_{(g)} \rightleftharpoons {2\ NH_3}_{(g)}} } ,
ergibt sich:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle K_p = \frac{ p^2 \mathrm{(NH_3)}}{p \mathrm{(N_2)} \cdot p^3 \mathrm{(H_2)}} }
Die Umrechnung von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle K_p } in Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle K_c } erfolgt gemäß:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle K_p= \frac{ [c \mathrm{(NH_3)} RT]^2}{ c \mathrm{(N_2)} RT \cdot [c \mathrm{(H_2)} RT]^3} = \frac{c^2 \mathrm{(NH_3)}}{c \mathrm{(N_2)} \cdot c^3 \mathrm{(H_2)}} \cdot \frac{1}{(RT)^2} = K_c \cdot \frac{1}{(RT)^2} }
Allgemein lässt sich also das Massenwirkungsgesetz eines Gasphasengleichgewichts ausdrücken als:[16][17]
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle K_p = K_c\cdot {(RT)^{\nu_\mathrm{ges}}} }
Dabei ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\textstyle \nu_\mathrm{ges} = \textstyle \sum_{{i}=1}^z {\nu_i} \displaystyle } die Summe der stöchiometrische Zahlen der betrachteten Reaktion. Im Fall der Bildung von HI aus den Elementen ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \nu_\mathrm{ges} = -1 - 1 + 2 = 0 } . Beim Haber-Bosch-Verfahren ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \nu_\mathrm{ges} = -3 - 1 + 2 = -2 } .
Alternativ ist es oft zweckmäßig, die Zusammensetzung der Gasphase über Molenbrüche (Stoffmengenanteile) Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\textstyle \chi_i} anzugeben. In diesem Fall wird eine auf die Stoffmengenanteile bezogene Gleichgewichtskonstante Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle K_x} erhalten:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle K_x = \prod_{i=1}^z x_i^{{\nu}_i}} mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x_i = \frac{p_i}{p} }
Allgemein gilt hier:[17]
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle K_x = K_c \cdot {\left( \dfrac{RT}{p} \right)^{\nu_\mathrm{ges}}} }
Anwendungen des Massenwirkungsgesetzes
Für eine Vielzahl von Spezialfällen definiert das Massenwirkungsgesetzes – teilweise in vereinfachter Form – Gleichgewichtskonstanten für spezifische Reaktionsszenarien. So beschreiben Assoziations- und Dissoziationskonstanten das Gleichgewicht für Assoziations- und Dissoziationsprozesse. Das Löslichkeitsprodukt definiert die Gleichgewichtslöslichkeit von Salzen in Wasser. Komplexbildungskonstanten quantifizieren die Stabilität von Komplexverbindungen. Ionenprodukte werden durch Vereinfachung des Massenwirkungsgesetzes für elektrolytische Dissoziationsprozesse erhalten. Die quantitative thermodynamische Beschreibung der Säure-Base-Chemie durch Säurekonstanten und Basenkonstanten basiert auf dem Massenwirkungsgesetz. Die Protolyse von Essigsäure in wässeriger Lösung wird beispielsweise durch folgende stöchiometrische Reaktionsgleichung beschrieben:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathrm{CH_3COOH_{(aq)} + H_2O_{(aq)} \rightleftharpoons H_3O^+_{(aq)} + CH_3COO^-_{(aq)}}}
Die Säurekonstante Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle K_\mathrm{s}} von Essigsäure ergibt sich gemäß:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle K_\mathrm{s} = \frac{c(\mathrm{H}_3\mathrm{O}^+) \cdot c(\mathrm{CH_3COO}^-)}{c(\mathrm{CH_3COOH})} = K_c \cdot c(\mathrm{H_2O})}
Literatur
- Peter W. Atkins, Julio de Paula: Physikalische Chemie. Aus dem Englischen von Michael Bär, Anna Schleitzer und Carsten Heinisch. 5. Auflage. Wiley-VCH, Weinheim 2013, ISBN 978-3-527-33247-2.
- Kenneth Denbigh: The Principles of Chemical Equilibrium: With Applications in Chemistry and Chemical Engineering. 4. Auflage, Cambridge University Press, Cambridge 1981, ISBN 0-521-28150-4, doi:10.1017/CBO9781139167604.
- Charles E. Mortimer, Ulrich Müller: Chemie – Das Basiswissen der Chemie. 13. Auflage. Georg Thieme Verlag, Stuttgart 2019, ISBN 978-3-132-42274-2.
- Ostwalds Klassiker der exakten Wissenschaften Nr. 139. Thermodynamische Abhandlungen über Molekulartheorie und chemische Gleichgewichte. Drei Abhandlungen aus den Jahren 1867, 1868, 1870 und 1872 von C. M. Guldberg. Aus dem Norwegischen übersetzt und herausgegeben von R. Abegg. Leipzig: Wilh. Engelmann, 1903.
- Gerd Wedler, Hans-Joachim Freund: Lehr- und Arbeitsbuch Physikalische Chemie. 7. Auflage. Wiley-VCH, Weinheim 2018, ISBN 978-3-527-34611-0.
Weblinks
- Prof. Blume über: Massenwirkungsgesetz (MWG) – ausführliche Beispiele und Herleitungen
- Das Massenwirkungsgesetz im Video – Herleitung und Erklärung des MWG im Video
- P. Waage, C. M. Gulberg, Studies Concerning Affinity, englische Übersetzung ihrer Veröffentlichung von 1864. pdf
Einzelnachweise
- ↑ Karl-Heinz Lautenschläger, Werner Schröter, Joachim Teschner, Hildegard Bibrack, Taschenbuch der Chemie, 18. Auflage, Harri Deutsch, Frankfurt (Main), 2001, S. 257.
- ↑ equilibrium constant. IUPAC, 7. Oktober 2008, abgerufen am 29. September 2018 (englisch).
- ↑ A. F. Holleman, E. Wiberg, N. Wiberg: Lehrbuch der Anorganischen Chemie. 102. Auflage. Walter de Gruyter, Berlin 2007, ISBN 978-3-11-017770-1, S. 194.
- ↑ Seine Arbeiten wurden von Walther Nernst bei Ostwalds Klassikern 1908 in deutscher Übersetzung veröffentlicht.
- ↑ E. W. Lund, Guldberg and Waage and the law of mass action, Journal of Chemical Education, Band 42, 1965, S. 548
- ↑
- ↑
- ↑ The Thermodynamic Equilibrium Constant. https://chem.libretexts.org/@go/page/23754
- ↑
- ↑
- ↑ R. Van Eldik, T. Asano, W. J. Le Noble: Activation and reaction volumes in solution. 2. In: Chem. Rev.. 89, Nr. 3, 1989, S. 549–688. Modul:Vorlage:Handle * library URIutil invalid.
- ↑
- ↑ Kenneth Denbigh: Principles of Chemical Equilibrium, 1. Auflage, Cambridge University Press, 1955 (Abgerufen am 9. September 2013).
- ↑ Guenter Gauglitz, Manuela Reichert: Chemisches Gleichgewicht. Abgerufen am 11. September 2018.
- ↑ , Kapitel 3.5.1, online: https://www.sciencedirect.com/science/article/pii/S1470180498800230
- ↑ Charles E. Mortimer, Ulrich Müller, Johannes Beck: Chemie: Das Basiswissen der Chemie, Thieme, Stuttgart, 2014, S. 273. Eingeschränkte Vorschau in der Google-Buchsuche
- ↑ a b Gerd Wedler: Lehrbuch der Physikalischen Chemie, VCH, Weinheim, 3. Auflage, 1987, S. 346f.