Enterobakteriophage Qbeta
Enterobakteriophage Qbeta | ||||||
---|---|---|---|---|---|---|
TEM-Aufnahme von Phage Qβ | ||||||
Systematik | ||||||
Taxonomische Merkmale | ||||||
| ||||||
Wissenschaftlicher Name | ||||||
Qubevirus durum
| ||||||
Kurzbezeichnung | ||||||
Qβ | ||||||
Links | ||||||
|
Escherichia-Virus Qbeta, offiziell Qubevirus durum (veraltet Enterobacteriophage Qbeta, Bakteriophage Qβ, Coliphage Qβ), kurz Qβ, besitzt ein einzelsträngiges lineares RNA-Genom, das in einem ikosaedrischen Kapsid mit einem Durchmesser von 25 nm verpackt ist. Sein Wirt ist das Bakterium Escherichia coli (Colibakterium). Phage
Qβ ist eine Spezies der Gattung Qubevirus (früher Allolevivirus) und gehört mit ihr zu einer Familie eng verwandter bakterieller Viren mit der Bezeichnung Fiersviridae (früher Leviviridaegenannt). Phage Qβ dringt in seine Wirtszelle ein, nachdem er sich an die Seite eines F-Pilus (Sexpilus) gebunden hat.[4]
Genom
Das Genom von Qβ ist 4215 Nukleotide lang. Es hat drei offene Leserahmen (Open Reading Frames, ORFs) und kodiert vier Proteine: A1, A2, CP und qβ(-Replikase). Das Genom ist stark strukturiert, was einerseits die Genexpression reguliert und andrerseits das Genom vor zerstörerischen RNasen der Wirtszelle schützt.[4]
Protein A2
A2 wird aufgrund seiner Lyse-Aktivität als Reifungsprotein bezeichnet. Pro Viruspartikel (Virion) gibt es eine Kopie von A2. Der Mechanismus der Lyse ist dem des Penicillins ähnlich; A2 hemmt die Bildung von Peptidoglycan durch Hemmung (Inhibierung) des Enzyms UDP-N-Acetylglucosamin-1-carboxyvinyltransferase (MurA), das den ersten Schritt der Peptidoglycan-Synthese katalysiert.
A2 funktioniert auch bei der Erkennung von Wirtszellen und dem Eindringen in die Wirtszelle. Wenn A2 an den Sexpilus des Bakteriums bindet, spaltet sich A2 und bahnt einen Weg, indem es eine Pore in der Zellwand des Wirts bildet.
RNA-Polymerase
Die RNA-Polymerase, die sowohl den Plus- als auch den Minus-RNA-Strang repliziert, ist ein Komplex aus vier Proteinen: Die Beta-Untereinheit (qβ-Replikase) wird vom Phagen selbst kodiert, während die anderen drei Untereinheiten vom Bakteriengenom kodiert werden: die Alpha-Untereinheit (ribosomales Protein S1), die Gamma-Untereinheit (Elongationsfaktor Tu, EF-Tu) und die Delta-Untereinheit (Elongationsfaktor Ts, EF-Ts).[5]
Nutzung
RNA aus Bakteriophage Qβ wurde von Sol Spiegelman in Experimenten verwendet, die eine schnellere Replikation und damit kürzere RNA-Stränge evolutionär begünstigten. Am Ende bildete sich Spiegelmans Monster, eine sich selbst replizierende RNA-Kette von nur 218 Nukleotiden.
Im März 2020 wurde über Versuche des Forschungsverbunds Berlin berichtet, mit Hilfe modifizierter leerer Kapsidhüllen von Qβ Antikörper gegen Influenza- und Coronaviren (wie den Verursacher der COVID-19-Pandemie, SARS-CoV-2) zu entwickeln.[6][7][8]
Eine Übersicht über die Entwicklung von Vakzinen aus Qβ-abgeleiteten VLPs (
) findet sich bei Bachmann, Storni et al. (2020).[9]
Einzelnachweise
- ↑ a b c d ICTV: ICTV Master Species List 2020.v1, New MSL including all taxa updates since the 2019 release, March 2021 (MSL #36)
- ↑ a b ICTV: ICTV Master Species List 2019.v1, New MSL including all taxa updates since the 2018b release, March 2020 (MSL #35)
- ↑ ICTV Master Species List 2018b v1 MSL #34, Feb. 2019
- ↑ a b Kashiwagi A, Yomo T: Ongoing phenotypic and genomic changes in experimental coevolution of RNA bacteriophage Qβ and Escherichia coli. In: PLoS Genetics. 7, Nr. 8, August 2011, S. e1002188. doi:10.1371/journal.pgen.1002188. PMID 21829387. PMC 3150450 (freier Volltext).
- ↑ J. van Duin, N. Tsareva: Single-stranded RNA phages. Chapter 15. In: R. L. Calendar (Hrsg.): The Bacteriophages, Second. Auflage, Oxford University Press, 2006, ISBN 0195148509, S. 175–196.
- ↑ Scientists Create Phage Capsid Nanoparticles That Prevent Viral Infection, auf: SciTechDaily vom 31. März 2020
- ↑ Influenza and Coronavirus Demise Could Lie with Phage Nanoparticles, auf: genengnews.com (GEN) vom 31. März 2020
- ↑ Daniel Lauster et al.: “Phage capsid nanoparticles with defined ligand arrangement block influenza virus entry”, in: Nature Nanotechnology vom 30. März 2020, doi:10.1038/s41565-020-0660-2
- ↑ Martin F. Bachmann, Federico Storni et al: Vaccine against peanut allergy based on engineered virus-like particles displaying single major peanut allergens, in: Journal of Allergy and Clinical Immunology, Band 145, Nr. 4, April 2020, S. 1240-1253.e3, doi:10.1016/j.jaci.2019.12.007, PDF