Universelle zentrale Erweiterung

aus Wikipedia, der freien Enzyklopädie
Dies ist die aktuelle Version dieser Seite, zuletzt bearbeitet am 25. September 2022 um 16:37 Uhr durch imported>Gak69(2286542) (Tippfehler korrigiert).
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)

In der Mathematik ist die universelle zentrale Erweiterung einer Gruppe ein Begriff aus der Gruppentheorie.

Definition

Eine zentrale Erweiterung einer Gruppe durch eine abelsche Gruppe besteht aus einer Gruppe und einem surjektiven Gruppenhomomorphismus mit Kern isomorph zu . Ein Morphismus zwischen zwei zentralen Erweiterungen derselben Gruppe ist ein Gruppenhomomorphismus mit .

Eine zentrale Erweiterung

heißt universelle zentrale Erweiterung, wenn es für jede andere zentrale Erweiterung

einen eindeutigen Morphismus zentraler Erweiterungen von nach gibt.

Existenz und Eindeutigkeit

Eine universelle zentrale Erweiterung ist bis auf Isomorphismus eindeutig bestimmt, aber eine Gruppe hat nur dann eine universelle zentrale Erweiterung, wenn sie perfekt ist. In diesem Fall ist eine zentrale Erweiterung genau dann universell, wenn perfekt ist und alle zentralen Erweiterungen von trivial sind. Äquivalent ist eine zentrale Erweiterung einer perfekten Gruppe genau dann universell, wenn und . Der Kern der universellen zentralen Erweiterung ist isomorph zu .

Unter dem Isomorphismus entspricht die universelle zentrale Erweiterung der Identität .

Für eine perfekte Gruppe mit Präsentierung konstruiert man die universelle zentrale Erweiterung als .

Beispiele

Literatur

  • J. Rosenberg: Algebraic K-Theory and Applications, Graduate Texts in Mathematics 147, Springer Verlag, Berlin-Heidelberg-New York, 1994