μ-Rekursion

aus Wikipedia, der freien Enzyklopädie

Die Klasse Pr der μ-rekursiven Funktionen oder partiell-rekursiven Funktionen spielt in der Rekursionstheorie, einem Teilgebiet der theoretischen Informatik, eine wichtige Rolle (µ für griechisch μικρότατος ‚das kleinste‘). Nach der Church-Turing-These beschreibt sie die Menge aller Funktionen, die im intuitiven Sinn berechenbar sind. Eine wichtige echte Teilmenge der μ-rekursiven Funktionen sind die primitiv-rekursiven Funktionen.

Die Klasse der μ-rekursiven Funktionen stimmt überein mit der Klasse der Turing-berechenbaren Funktionen sowie weiteren gleich mächtigen Berechenbarkeitsmodellen, wie dem Lambda-Kalkül, Registermaschinen und WHILE-Programmen.

Die primitiv-rekursiven Funktionen sind aus einfachen Grundfunktionen (konstante 0-Funktion, Projektionen auf ein Argument und Nachfolgerfunktion) durch Komposition und primitive Rekursion aufgebaut. Dadurch erhält man immer totale Funktionen, also Funktionen im eigentlichen Sinn. Die μ-rekursiven Funktionen sind demgegenüber partielle Funktionen, die aus denselben Konstrukten und zusätzlich durch die Anwendung des μ-Operators gebildet werden können. Durch die Anwendung des μ-Operators wird Partialität eingeführt. Jedoch ist nicht jede μ-rekursive Funktion nicht-total. Beispielsweise sind alle primitiv-rekursiven Funktionen auch μ-rekursiv. Ein Beispiel für eine nicht primitiv-rekursive, totale, μ-rekursive Funktion ist die Ackermannfunktion.

Definition des μ-Operators

Für eine partielle Funktion Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f\colon\mathbb{N}^{k+1} \to \mathbb{N}} und natürliche Zahlen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x_1;\dots;x_k \in \N} sei die Menge

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle M(f,x_1,\dots,x_k) = \{n \in \N \mid f(x_1,\dots,x_k,n) = 0\ \land\ \forall 0 \leq m \leq n \colon f(x_1,\dots,x_k,m) \downarrow \}}

festgehalten, also die Gesamtheit aller Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n} derart, dass an der Stelle Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (x_1,\dots,x_k,n)} identisch 0 verschwindet und zusätzlich für alle Punkte Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (x_1,\dots,x_k,m)} mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle m \leq n} definiert ist.

Zu beachten ist dabei, dass Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle M(f,x_1,\dots,x_k)} als Menge natürlicher Zahlen genau dann ein Minimum besitzt, wenn sie nicht leer ist. (vgl. Wohlordnung)

Durch Anwendung des Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mu} -Operators auf Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f} entstehe nun die partielle Funktion Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mu f \colon \N^k \to \N} definiert durch:

Insbesondere bildet der Operator Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mu} also eine Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (k+1)} -stellige partielle Funktion auf eine Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle k} -stellige partielle Funktion ab.

Für berechenbares Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f} kann das Programm zur Berechnung von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mu f} verstanden werden als eine While-Schleife, die nach oben zählt, und die deswegen nicht terminieren muss:

Parameter: Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x_1, ..., x_k}
.
Setze Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n}
 auf ;
Solange Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f(x_1,\dots,x_k,n) \not= 0}
 erhöhe Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n}
 um Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 1}
;
Ergebnis: Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n}
.

Definition der μ-rekursiven Funktionen

Die Klasse Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle Pr} der μ-rekursiven Funktionen (von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathbb{N}^k \to \mathbb{N}} ) umfasst die folgenden Grundfunktionen:

  1. konstante 0-Funktion:
  2. Projektion auf ein Argument: Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \pi_i^k \left( n_1,\dots, n_k \right) := n_i} , Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 1 \le i \le k}
  3. Nachfolgefunktion:

Die μ-rekursiven Funktionen erhält man als Abschluss der Grundfunktionen bezüglich der drei folgenden Operationen:

  1. Die Komposition: Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f \left( n_1,\dots, n_k \right) := g \left( h_1 \left( n_1,\dots, n_k \right),\dots, h_m \left( n_1,\dots, n_k \right) \right)} , falls Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle g, h_1,\dots, h_m \in Pr}
  2. Die Primitive Rekursion: Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f \left( 0, n_2,\dots, n_k \right) := g \left( n_2,\dots, n_k \right)} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f \left( n_1 + 1, n_2,\dots, n_k \right) := h \left( f \left( n_1,\dots, n_k \right), n_1,\dots, n_k \right)} , falls Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle h, g \in Pr}
  3. Der μ-Operator.

Äquivalenz der μ-rekursiven Funktionen mit der Turingmaschine

Es lässt sich beweisen, dass eine Turingmaschine (TM) durch μ-rekursive Funktionen simuliert werden kann. Es lässt sich auch beweisen, dass die Menge der μ-rekursiven Funktionen genau der Menge der Turing-berechenbaren Funktionen entspricht.

Beweis-Skizze für die Simulation der TM mit μ-rekursiven Funktionen

Man kann zeigen, dass sich die Konfiguration einer TM durch drei Zahlen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a} , Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle b} , Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle c} darstellen lässt. Genau so kann eine Funktion Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle h(a,b,c)=y} (eine bijektive Abbildung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathbb{N}^3 \to \mathbb{N}} ) definiert werden, die eine geeignete Kodierung der TM ist.

Nehmen wir also eine primitiv-rekursive Funktion

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f(n,x)= y} ,

die eine geeignete Kodierung der TM liefert für die Eingabe Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x} nach Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n} Berechnungsschritten,

und eine zweite primitiv-rekursive Funktion

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle g(y)=0 \lor g(y)=1} ,

die für eine Kodierung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle y} als Ergebnis 0 liefert, falls Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle y} einen Endzustand der TM repräsentiert, und ansonsten 1.

Dann ergibt

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathrm{Anzahl}(x)=\mu(g(f(n,x)))}

die Anzahl der Schritte, die eine TM zur Berechnung bis zum Ende benötigt. Also bekommen wir mit

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathrm{Berechnung}(x)=f(\mathrm{Anzahl}(x), x)}

die Berechnung der TM in einem Endzustand bei der Eingabe Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x} .

Bemerkung

  • Die Berechenbarkeit einer μ-rekursiven Funktion bezieht sich auf Werte aus ihrem Definitionsbereich. Es existiert kein allgemeines Verfahren, das alle Werte liefert, die nicht zum Definitionsbereich einer μ-rekursiven Funktion gehören.
  • Der μ-Operator realisiert einen Suchprozess, der genau dann abbricht, wenn der gesuchte Wert existiert.

Beispiele

  • Alle primitiv-rekursiven Funktionen sind μ-rekursiv.
  • Die Ackermannfunktion und die Sudanfunktion sind totale μ-rekursive Funktionen, die nicht primitiv-rekursiv sind.
  • Die Funktion Fleißiger Biber (busy beaver) ist nicht μ-rekursiv.
  • Die Folge der Ziffern der Halte-Wahrscheinlichkeit (Chaitinsche Konstante Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Omega} ) ist nicht μ-rekursiv. Die Halte-Wahrscheinlichkeit ist definiert durch Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Omega:=\sum_{p}2^{-\left|p\right|}} , wobei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle p} ein haltendes Programm ist und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \left| p\right|} die Länge des Programms in Bit bezeichnet.

Literatur

  • Heinz-Dieter Ebbinghaus, Jörg Flum, Wolfgang Thomas: Einführung in die mathematische Logik (= Spektrum-Hochschultaschenbuch.). 4. Auflage. Spektrum – Akademischer Verlag, Heidelberg u. a. 1996, ISBN 3-8274-0130-5.
  • Hans Hermes: Aufzählbarkeit, Entscheidbarkeit, Berechenbarkeit. Einführung in die Theorie der rekursiven Funktionen (= Heidelberger Taschenbücher. 87). 2. Auflage. Springer, Berlin u. a. 1971, ISBN 3-540-05334-4.
  • Arnold Oberschelp: Rekursionstheorie. BI-Wissenschaftlicher-Verlag, Mannheim u. a. 1993, ISBN 3-411-16171-X.
  • Wolfgang Rautenberg: Einführung in die Mathematische Logik. Ein Lehrbuch. 3., überarbeitete Auflage. Vieweg + Teubner, Wiesbaden 2008, ISBN 978-3-8348-0578-2.