ARCH-Modelle
ARCH-Modelle (ARCH, Akronym für: AutoRegressive Conditional Heteroscedasticity, deutsch autoregressive bedingte Heteroskedastizität) bzw. autoregressive bedingt heteroskedastische Zeitreihenmodelle sind stochastische Modelle zur Zeitreihenanalyse, mit deren Hilfe insbesondere finanzmathematische Zeitreihen mit nicht konstanter Volatilität beschrieben werden können. Sie gehen von der Annahme aus, dass die bedingte Varianz der zufälligen Modellfehler abhängig ist vom realisierten Zufallsfehler der Vorperiode, so dass große und kleine Fehler dazu tendieren, in Gruppen aufzutreten. ARCH-Modelle wurden von Robert F. Engle in den 1980er Jahren entwickelt. Im Jahr 2003 wurde ihm dafür der Nobelpreis für Wirtschaftswissenschaften verliehen.
Definition
Eine Zeitreihe Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (x_t)_{t \in \Z}} heißt ARCH(p)-Zeitreihe, wenn sie rekursiv definiert ist durch[1]
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \begin{align} x_t &= \sigma_t \epsilon_t \\ \sigma_t^2 &= a_0 + a_1 x_{t-1}^2 + \dotsb + a_p x_{t-p}^2, \end{align} }
wobei Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle a_{0},\dotsc ,a_{p}} mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a_p \neq 0} reelle, nichtnegative Parameter sind, und der Prozess Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (\epsilon_t)_{t\in \Z}} aus unabhängigen identisch verteilten Zufallsvariablen mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \operatorname{E}(\epsilon_t) = 0} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \operatorname{Var}(\epsilon_t) = 1} besteht.
Eigenschaften
Für ARCH-Modelle gelten unter der Zusatzbedingung, dass für alle Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle t\in \Z} bezüglich der durch Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (\epsilon_s)_{s \leq t-1}} erzeugten σ-Algebra messbar ist, die folgenden Aussagen:[1][2]
- Die auf die Vergangenheit bedingten Erwartungswerte und bedingten Varianzen sind:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \operatorname{E}(x_t \mid x_{t-1}, x_{t-2}, \dotsc) = 0} und
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \operatorname{Var}(x_t \mid x_{t-1}, x_{t-2}, \dotsc) = \sigma_t^2} .
- Eine ARCH(p)-Zeitreihe Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (x_t)} ist genau dann (schwach) stationär, wenn alle Nullstellen des charakteristischen Polynoms
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle P(z) = 1 - a_1 z - \dotsb - a_p z^p}
- außerhalb des komplexen Einheitskreises liegen.
- Eine stationäre ARCH(p)-Zeitreihe hat den stationären Erwartungswert Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \operatorname{E}(x_t) = 0} und ihre Autokorrelation verschwindet: für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle h > 0} . Für ihre stationäre Varianz gilt die Formel
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \operatorname{Var}(x_t) = \frac{a_0}{1- \sum_{k=1}^p a_k}} .
- Ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (x_t)} eine stationäre ARCH(p)-Zeitreihe, für die Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \operatorname{E}(x_t^4) < \infty} gilt, dann ist der quadrierte Prozess Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (x_t^2)} eine AR-Zeitreihe.
Verallgemeinerungen
Die Idee des ARCH-Modells wurde in verschiedener Weise weiterentwickelt und gehört heute ganz selbstverständlich zu den fortgeschrittenen Methoden der Ökonometrie.
Eine Verallgemeinerung sind die GARCH-Modelle (generalized autoregressive conditional heteroscedasticity), die 1986 von Tim Bollerslev entwickelt wurden. Hierbei hängt die bedingte Varianz nicht nur von der Historie der Zeitreihe ab, sondern auch von ihrer eigenen Vergangenheit. Zeitstetige Analoga, sogenannte COGARCH-Modelle (continuous-time GARCH), wurden von Feike C. Drost und Bas J. C. Werker sowie Claudia Klüppelberg, Alexander Lindner und Ross Maller vorgestellt.
Literatur
- Robert F. Engle: Autoregressive Conditional Heteroskedasticity with Estimates of the Variance of UK. Inflation. In: Econometrica. Vol.: 50, pp. 987–1008, 1982. JSTOR 1912773
- Tim Bollerslev: Generalized Autoregressive Conditional Heteroskedasticity. In: Journal of Econometrics. Vol.: 31 No.: 3, pp. 307–327, 1986. doi:10.1016/0304-4076(86)90063-1
- Jürgen Franke, Wolfgang Härdle, Christian Matthias Hafner: Statistics of Financial Markets: An Introduction. 3. Auflage Springer, Berlin/Heidelberg/New York 2011, ISBN 978-3-642-16520-7, Kapitel 13, S. 283–342.
- Christian Gouriéroux: ARCH Models and Financial Applications. Springer, New York 1997, ISBN 0-387-94876-7.
- Feike C. Drost, F.C., Bas J. C. Werker: Closing the GARCH gap: continuous GARCH modelling. In: Journal of Econometrics. Vol.: 74, No.: 1, pp. 31–57, 1996. doi:10.1016/0304-4076(95)01750-X
- Claudia Klüppelberg, Alexander Lindner, Ross Maller: A continuous-time GARCH process driven by a Lévy process: Stationarity and second-order behaviour. In: Journal of Applied Probability. Vol.: 41 No.: 3, pp. 601–622, 2004. doi:10.1239/jap/1091543413 JSTOR 4141341
- Evdokia Xekalaki, Stavros Degiannakis: ARCH Models for Financial Applications. Wiley, New York 2010, ISBN 978-0-470-06630-0.
Einzelnachweise
- ↑ a b Jens-Peter Kreiß, Georg Neuhaus: Einführung in die Zeitreihenanalyse. Springer-Verlag, Berlin / Heidelberg 2006, ISBN 3-540-25628-8, S. 298f.
- ↑ Rainer Schlittgen, Bernd H. J. Streitberg: Zeitreihenanalyse. 9. Auflage. Oldenbourg Verlag, München/Wien 2001, ISBN 3-486-25725-0, S. 450 f.