Eigenzustand
Eigenzustand ist ein grundlegender Begriff der Quantenphysik. Als Eigenzustand zu einer gegebenen physikalischen Größe bezeichnet man einen Zustand eines physikalischen Systems, in dem diese Größe einen wohlbestimmten Wert hat. Nur dieser Wert kann sich als Messergebnis ergeben, wenn an einem System, das sich in dem Eigenzustand befindet, eine fehlerfreie Messung dieser Größe durchgeführt wird. Er wird auch als der Eigenwert bezeichnet, mit dem die betrachtete Größe im betrachteten Zustand vorliegt, und die physikalische Größe an sich wird in diesem Zusammenhang als Observable bezeichnet. Der Eigenzustand wird häufig durch Angabe der Observablen und ihres Eigenwerts charakterisiert, gegebenenfalls z. B. durch eine Quantenzahl, die die laufende Nummer des Eigenwerts in einer Auflistung aller möglichen Eigenwerte der Observablen ist.
Eine besondere Bedeutung haben die Eigenzustände des Hamilton-Operators, denn sie sind die Energieeigenzustände oder stationären Zustände des von diesem Hamilton-Operator beschriebenen Systems. Z. B. befindet sich ein Wasserstoffatom in seinem energetisch tiefstmöglichen Zustand, wenn es im Eigenzustand zur Energie mit der (Haupt-)Quantenzahl n=1 vorliegt.
Überlagerungszustand
Ein System kann (bis auf wenige Ausnahmen) verschiedene Eigenzustände derselben Observablen annehmen. Dann stehen dem System nach den Regeln der Quantenmechanik auch alle Überlagerungszustände zur Verfügung, in denen verschiedene Eigenzustände gleichzeitig vorliegen, jeder mit einer bestimmten Wahrscheinlichkeitsamplitude. Sind nur Eigenzustände zum selben Eigenwert überlagert, so ist auch der Überlagerungszustand ein Eigenzustand derselben Observablen zum selben Eigenwert. Das Ergebnis einer Messung dieser Observablen ist daher eindeutig vorherzusagen. Sind jedoch Eigenzustände zu verschiedenen Eigenwerten überlagert, so kann bei einer Messung mit gewisser Wahrscheinlichkeit jeder dieser Eigenwerte als Ergebnis erscheinen.
Mit anderen Worten: anders als in der klassischen Physik haben in der Quantenmechanik nicht alle messbaren Größen in jedem Zustand einen wohlbestimmten Wert. Deshalb kann man auch nicht immer mit Sicherheit das Ergebnis einer entsprechenden (fehlerfreien) Messung vorhersagen. Hat aber eine Messgröße in einem Zustand einen wohlbestimmten Wert, dann wird der Zustand als Eigenzustand zu dieser Messgröße bezeichnet und ihr wohlbestimmter Wert als der jeweilige Eigenwert. Die Messung ergibt immer den Eigenwert und hinterlässt das System im selben Eigenzustand.
Messergebnisse von nicht vertauschbaren Observablen
Besondere Beachtung verdienen die Observablen, zu denen es keine gemeinsamen Eigenzustände gibt. Hat man zu einer Observablen eine Messung durchgeführt, also einen ihrer Eigenwerte als Ergebnis erhalten, so befindet sich das System danach im entsprechenden Eigenzustand zu diesem Eigenwert. Wenn dieser Eigenzustand der ersten Observablen aber kein Eigenzustand der zweiten Observablen ist, ist er jedenfalls ein Überlagerungszustand ihrer Eigenzustände, und zwar mit verschiedenen Eigenwerten. Für eine Messung der zweiten Observablen ist dann das genaue Ergebnis nicht vorhersagbar, es kann jeder ihrer Eigenwerte sein, der in dieser Überlagerung vertreten ist. Darüber hinaus würde das System, wenn man nur die Reihenfolge der Messungen vertauscht, danach in einem anderen Zustand sein. Solche Observablen heißen nicht vertauschbar. Ein bekanntes Beispiel sind die zwei Observablen für Ort und Impuls eines Teilchens.
Darstellung im Mathematischen Formalismus
Im mathematischen Formalismus wird ein Zustand durch einen Vektor im Hilbertraum, z. B. eine Wellenfunktion, repräsentiert; ein Eigenzustand einer Observablen dementsprechend durch einen der Eigenvektoren (bzw. Eigenfunktionen) der Observablen. Die Observable wird durch einen selbstadjungierten linearen Operator dargestellt. Angewandt auf den Eigenzustand ergibt sich derselbe Eigenzustand, multipliziert mit einem skalaren Faktor. Dieser Faktor ist der Eigenwert des betreffenden Operators in diesem Zustand.
Die Überlagerung verschiedener Zustände wird durch eine Linearkombination der betreffenden Zustandsvektoren bzw. Wellenfunktionen dargestellt, wobei die Koeffizienten der einzelnen Komponenten gerade die Wahrscheinlichkeitsamplituden angeben.
Notation
Hat der Operator Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \hat A } die Eigenwerte Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a_1, \, a_2, \,a_3, \, \dots } , dann schreibt sich die Eigenwertgleichung für den -ten Eigenzustand Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle | \psi_n \rangle} so:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \hat A | \psi_n\rangle = a_n | \psi_n \rangle}
Beispiel: Die Lösungen der stationären Schrödingergleichung
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \hat H | \varphi\rangle = E | \varphi \rangle}
sind die Eigenzustände Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle | \varphi \rangle = | \psi_n\rangle} des Hamiltonoperators Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \hat H} , sodass mit den Eigenwerten gilt:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \hat H | \psi_n \rangle = E_n | \psi_n \rangle}
Bedeutung
Wenn vor einer bestimmten Messung das untersuchte System in einem Eigenzustand Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle | \psi_m\rangle} des entsprechenden Operators Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \hat A} ist, dann ist das sichere Ergebnis dieser Messung gerade der Eigenwert Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a_m} . Liegt das System aber in einem Zustand Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle | \varphi \rangle} vor, der nicht Eigenzustand zu Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \hat A } ist, so kann das Messergebnis nicht mit Sicherheit vorhergesagt werden. Jeder der Eigenwerte Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a_1, \, a_2, \, a_3, \, \dots } ist dann ein mögliches Messergebnis, wobei die Wahrscheinlichkeit für das Ergebnis Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a_n } (wenn die Zustände auf 1 normiert sind) gegeben ist durch Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vert \, \langle \psi_n | \varphi \rangle \vert ^2} (d. h. durch das Betragsquadrat der Komponente des Vektors Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle | \varphi \rangle} längs Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle | \psi_n \rangle} ). Das Skalarprodukt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \langle \psi_n | \varphi \rangle} selber wird auch die Amplitude des Zustands Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle | \psi_n \rangle} im Zustand Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle | \varphi \rangle} genannt.
Nach einer Messung ist das untersuchte System dann in demjenigen Eigenzustand des betreffenden Operators, dessen Eigenwert mit dem Messergebnis übereinstimmt. Dies wird als Zustandsreduktion bezeichnet. Sie stellt u. a. sicher, dass eine sofortige Wiederholung der Messung dasselbe Ergebnis zeigt.
Eigenschaften
- Die Eigenzustände desselben hermiteschen Operators, aber mit verschiedenen Eigenwerten, sind orthogonal: wenn Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a_n \ne a_m } , dann .
- Wenn eine Anzahl Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle g} paarweise orthogonaler Eigenzustände desselben hermiteschen Operators denselben Eigenwert haben, heißt dieser Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle g} -fach entartet. Jede Linearkombination dieser Eigenzustände ist dann auch Eigenzustand zum selben Eigenwert, insgesamt ein Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle g} -dimensionaler Unterraum des gesamten Zustandsraums. Welche Basisvektoren man darin auswählt, ist beliebig.
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle g} gibt in der Quantenstatistik das statistische Gewicht des Eigenwerts an. Das wird abgekürzt, aber ungenau, häufig so ausgedrückt, dass es für diesen Messwert „genau Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle g} verschiedene Zustände“ gäbe. Diese Ausdrucksweise bezieht sich auf die maximale Anzahl linear unabhängiger Zustände unter allen Eigenzuständen zum selben Eigenwert, also die Dimension des Unterraums.
- Allgemein ist jede (normierte) Linearkombination von Zustandsvektoren ein möglicher Zustandsvektor (Superpositionsprinzip), öfters auch Überlagerungszustand genannt. Sind Eigenzustände eines bestimmten Operators überlagert, so ist der Überlagerungszustand ein Eigenzustand zu demselben Operator genau dann, wenn in der Linearkombination nur Eigenzustände zum selben Eigenwert vorkommen.
Literatur
Wolfgang Nolting: Grundkurs Theoretische Physik 5/1; Quantenmechanik – Grundlagen. 5. Auflage. Springer, Berlin Heidelberg 2002, ISBN 3-540-42114-9, S. 119.