Fitting-Untergruppe

aus Wikipedia, der freien Enzyklopädie

Die Fitting-Untergruppe, benannt nach Hans Fitting, ist eine im mathematischen Teilgebiet der Gruppentheorie betrachtete Konstruktion einer gewissen Untergruppe, in vielen Fällen handelt es sich um die größte nilpotente Untergruppe.

Definition

Es sei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle G} eine Gruppe. Die von allen nilpotenten Normalteilern erzeugte Untergruppe heißt die Fitting-Untergruppe und wird mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathrm{Fit}(G)} oder Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathrm{F}(G)} bezeichnet.

Vorsicht: Die Bezeichnung könnte mit der Frattinigruppe verwechselt werden, letztere wird von vielen Autoren aber mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Phi(G)} bezeichnet.

Bemerkungen

Die Fitting-Untergruppe ist stets ein Normalteiler, sogar eine charakteristische Untergruppe. Im Allgemeinen ist sie aber selbst nicht nilpotent (siehe Beispiele unten), doch es gilt der folgende

  • Satz von Fitting: Sind Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle M} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle N} nilpotente Normalteiler einer Gruppe, so ist auch ihr Komplexprodukt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle MN} ein nilpotenter Normalteiler.[1]

Ist also Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathrm{Fit}(G)} endlich erzeugt, so ergibt sich aus dem Satz von Fitting sofort, dass Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle \mathrm {Fit} (G)} nilpotent ist, denn dann ist diese Untergruppe ja ein endliches Komplexprodukt nilpotenter Normalteiler. Das gilt also insbesondere für Gruppen mit Maximalbedingung, das heißt für Gruppen, in denen jede nicht-leere Familie von Untergruppen ein maximales Element besitzt, denn in solchen ist jede Untergruppe endlich erzeugt. Insbesondere ist die Fitting-Untergruppe einer endlichen Gruppe stets der größte darin enthaltene nilpotente Normalteiler.

Die Fitting-Untergruppe kann trivial sein. Für endliche Gruppen ist das genau für die halbeinfachen Gruppen der Fall.[2]

Beispiele

  • Für nilpotente Gruppen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle G} ist definitionsgemäß Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathrm{Fit}(G) = G}
  • Ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle G} einfach und nichtabelsch, so ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathrm{Fit}(G) = \{1\}} , denn die Gruppe ist nicht nilpotent und es gibt keine echten Normalteiler.
  • Für die symmetrische Gruppe S3 ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathrm{Fit}(S_3) = \{(1),(123),(132)\}} .
  • Für auflösbare Gruppen ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathrm{Fit}(G) \not= \{1\}} , denn die kleinste nicht-triviale abgeleitete Gruppe ist ein abelscher und damit nilpotenter Normalteiler und als solcher in der Fitting-Untergruppe enthalten.
  • Sei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle H_n} eine Folge von nilpotenten Gruppen der Nilpotenzklasse n. Dann ist die direkte Summe Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \textstyle G:=\bigoplus_{n\in \N}H_n} nicht nilpotent, aber es gilt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathrm{Fit}(G) = G} , insbesondere haben wir hiermit ein Beispiel einer nicht-nilpotenten Fitting-Untergruppe.[3]

Endliche Gruppen

  • In endlichen Gruppen ist die Fitting-Untergruppe der Durchschnitt der Zentralisatoren der Hauptfaktoren.[4][5]

Zu den hier verwendeten Begriffen sei

eine Hauptreihe, das heißt eine Normalreihe, die sich nicht weiter verfeinern lässt. Die Faktorgruppen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle G_{i+1}/G_i} heißen Hauptfaktoren und deren Zentralisatoren sind

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle C_G(G_{i+1}/G_i) := \{x\in G|\, \forall y\in G_{i+1}: [x,y]\in G_i \}} .

Obige Aussage bedeutet

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathrm{Fit}(G) = \bigcap_{i=0}^{n-1} C_G(G_{i+1}/G_i) } .

Für eine Primzahl sei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle K_p} der Durchschnitt aller p-Sylowgruppen. Bezeichnet weiter Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathbb{P}} die Menge aller Primzahlen, so gilt

  • Für eine endliche Gruppe Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle G} ist Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle \mathrm {Fit} (G)=\bigoplus _{p\in \mathbb {P} ,p|\mathrm {ord} (G)}K_{p}} ,

wobei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle p|\mathrm{ord}(G)} bedeutet, dass p die Gruppenordnung teilt.[6]

Für endliche Gruppen besteht folgende Beziehung zur Frattinigruppe Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Phi(G)} :[7]

  • Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle [\mathrm{Fit}(G),\mathrm{Fit}(G)] \le \Phi(G) \le \mathrm{Fit}(G)}
  • Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathrm{Fit}(G)/\Phi(G) = \mathrm{Fit}(G/\Phi(G))} .

Die Nilpotenzlänge

Mittels der Fitting-Untergruppe kann man wie folgt rekursiv die sogenannte obere nilpotente Reihe

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \{1\} = U_0(G) \le U_1(G) \le \ldots }

einer Gruppe Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle G} bilden. Man setzt

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle U_0(G) := \{1\}}
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle U_{i+1}(G)/U_i(G) := \mathrm{Fit}(G/U_i(G))} .

Erreicht diese Reihe schließlich Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle G} , so nennt man das kleinste Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n} mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle U_n(G)=G} die Nilpotenzlänge von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle G} . Für auflösbare Gruppen ist das stets der Fall und die Nilpotenzlänge ist die kleinste Zahl Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n} , für die es eine Reihe

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \{1\} = G_0 \vartriangleleft G_1 \vartriangleleft \ldots \vartriangleleft G_n=G}

aus Normalteilern gibt, so dass die Faktoren Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle G_{i+1}/G_i} nilpotent sind.[8]

Einzelnachweise

  1. D.J.S. Robinson: A Course in the Theory of Groups, Springer-Verlag 1996, ISBN 0-387-94461-3, Satz 5.2.8
  2. D.J.S. Robinson: A Course in the Theory of Groups, Springer-Verlag 1996, ISBN 0-387-94461-3, Seite 133: The Fitting Subgroup
  3. W. R. Scott: Group Theory, Dover Publications (2010), ISBN 978-0-486-65377-8, Kapitel 7.4: Fitting Subgroup + Exercise 9.2.32
  4. D.J.S. Robinson: A Course in the Theory of Groups, Springer-Verlag 1996, ISBN 0-387-94461-3, Satz 5.2.9
  5. J. C. Lennox, D. J. S. Robinson: The Theory of Infinite Soulble Groups, Clarendon Press - Oxford 2004, ISBN 0-19-850728-3, Seite 9
  6. W. R. Scott: Group Theory, Dover Publications (2010), ISBN 978-0-486-65377-8, Satz 7.4.3
  7. W. Keith Nicholson: Introduction to Abstract Algebra, John Wiley & Sons Inc (2000), ISBN 978-1-118-13535-8, Kapitel 9.3, Theorem 10
  8. D.J.S. Robinson: A Course in the Theory of Groups, Springer-Verlag 1996, ISBN 0-387-94461-3, Satz 5.4.5