π-System
Ein π-System, auch durchschnittstabiles Mengensystem oder kurz schnittstabiles System genannt, ist ein spezielles Mengensystem, das im axiomatischen Aufbau der Wahrscheinlichkeitstheorie und der Maßtheorie verwendet werden kann.
Definition
Gegeben sei ein Mengensystem Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathcal S} , also eine Teilmenge der Potenzmenge einer Grundmenge Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Omega} . Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathcal S} heißt ein π-System, durchschnittstabiles Mengensystem oder schnittstabiles System, wenn für beliebige zwei Mengen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A, B} aus dem Mengensystem Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathcal S} gilt, dass Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A \cap B \in \mathcal S} ist.
Beispiele
Für eine beliebige Grundmenge Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Omega} sei das Mengensystem
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathcal S := \{ A \subset \Omega \mid |A| < \infty \}}
aller endlichen Teilmengen gegeben. Für zwei beliebige ist nun Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle |A \cap B| \leq \min(|A|,|B|)} , der Schnitt endlicher Mengen ist immer endlich. Also ist auch Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A \cap B \in \mathcal S} , es handelt sich somit um ein schnittsstabiles System.
Eigenschaften
- Ist das Mengensystem stabil unter Komplementbildung, so ist es genau dann durchschnittsstabil, wenn es vereinigungsstabil ist. Dies folgt direkt aus den de Morganschen Gesetzen.
- Ist das Mengensystem Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathcal S} stabil unter Differenzmengenbildung, dann ist es auch ein π-System. Dies folgt aus Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A\cap B = A\setminus (A\setminus B) \in \mathcal S} .
Verwendung
Durchschnittsstabile Mengensysteme treten an einigen Stellen in der Wahrscheinlichkeitstheorie und Stochastik auf. So ist die Durchschnittsstabilität eine wichtige Voraussetzung an den Erzeuger einer σ-Algebra, um nur auf diesem Erzeuger die stochastische Unabhängigkeit der Zufallsvariablen überprüfen zu müssen.
Wichtigste Anwendung ist der sogenannte dynkinsche π-λ Satz. Ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathcal S} ein π-System, dann stimmen die von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathcal S} erzeugte σ-Algebra und das erzeugte Dynkin-System überein, es gilt also
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \sigma(\mathcal S) = \delta(\mathcal S)} .
Siehe auch
Literatur
- Christian Hesse: Angewandte Wahrscheinlichkeitstheorie. 1. Auflage. Vieweg, Wiesbaden 2003, ISBN 3-528-03183-2, S. 20, doi:10.1007/978-3-663-01244-3.
- Heinz Bauer: Maß- und Integrationstheorie. 2., überarbeitete Auflage. de Gruyter, Berlin u. a. 1992, ISBN 3-11-013626-0.
- Achim Klenke: Wahrscheinlichkeitstheorie. 3. Auflage. Springer-Verlag, Berlin/ Heidelberg 2013, ISBN 978-3-642-36017-6, doi:10.1007/978-3-642-36018-3.