Quotientenregel
Die Quotientenregel ist eine grundlegende Regel der Differentialrechnung. Sie führt die Berechnung der Ableitung eines Quotienten von Funktionen auf die Berechnung der Ableitung der einzelnen Funktionen zurück.
Sind die Funktionen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle u(x)} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle v(x)} von einem Intervall D in die reellen oder komplexen Zahlen an der Stelle mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle v(x_a)\neq 0} differenzierbar, dann ist auch die Funktion f mit
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f(x) = \frac{u(x)}{v(x)}}
an der Stelle Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x_a} differenzierbar und es gilt:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f'(x_a) = \frac{u'(x_a)\cdot v(x_a) - u(x_a)\cdot v'(x_a)}{(v(x_a))^2} } .
In Kurzschreibweise:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \left(\frac{u}{v}\right)' = \frac{u'v - u v'}{v^2} }
Herleitung
Der Quotient Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle u(x) \over v(x) } kann als Steigung in einem Steigungsdreieck gedeutet werden, dessen Katheten u(x) und v(x) sind (siehe Abbildung). Wenn x um Δx anwächst, ändert sich u um Δu und v um Δv. Die Änderung der Steigung ist dann
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \begin{align} { \Delta \left( {u \over v} \right) } &= {{{ u + \Delta u } \over { v + \Delta v }} - { u \over v }} \\ &= {{ ( u + \Delta u ) \cdot v - u \cdot ( v + \Delta v ) } \over { ( v + \Delta v ) \cdot v }}\end{align} }
Dividiert man durch Δx, so folgt
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle {{{ \Delta \left( {u \over v} \right) } \over {\Delta x}}} = {{{ \Delta u \over \Delta x } \cdot v - u \cdot {\Delta v \over \Delta x} } \over { v^2 + \Delta v \cdot v }} }
Bildet man nun Limes Δx gegen 0, so wird
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle {{\left( {u \over v} \right) '}} = {{ u ' \cdot v - u \cdot v ' } \over { v^2 }} }
wie behauptet.
Beispiel
Verwendet man die Kurznotation Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \left(\frac{u}{\color{Blue}v}\right)' = \frac{u'\color{Blue}v \color{Black}- u \color{Blue}v'}{\color{Blue}v\color{Black}^2}} so erhält man beispielsweise für die Ableitung folgender Funktion:
Ausmultipliziert ergibt sich
Weitere Herleitungen
Gegeben sei Nach der Produktregel gilt:
Nach der Kehrwertregel (ergibt sich z. B. direkt oder mit Hilfe der Kettenregel)
folgt:
Eine alternative Herleitung gelingt nur mit der Produktregel durch Ableiten der Funktionsgleichung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f(x)\cdot v(x) = u(x) } . Allerdings wird hierbei implizit vorausgesetzt, dass Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f(x)} überhaupt eine Ableitung besitzt, das heißt, dass Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f'(x)} existiert.
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f'(x)\cdot v(x) + f(x)\cdot v'(x) = u'(x)}
folglich:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \begin{align} f'(x) &= \frac{u'(x)}{v(x)} - \frac{u(x)}{v(x)}\cdot\frac{v'(x)}{v(x)} \\ &= \frac{u'(x) v(x) - u(x) v'(x)}{v^2(x)}. \end{align}}
Literatur
Die Quotientenregel für Funktionen wird in fast jedem Buch erläutert, das Differentialrechnung in allgemeiner Form behandelt. Einige konkrete Beispiele sind:
- Otto Forster: Analysis 1. Differential- und Integralrechnung einer Veränderlichen. 7. Auflage. Vieweg, Braunschweig 2004, ISBN 3-528-67224-2, S. 155–157 (Auszug (Google))
- Konrad Königsberger: Analysis 1. Springer, Berlin 2004, ISBN 3-540-41282-4, S. 129
- Harro Heuser: Lehrbuch der Analysis. Teil 1. Vieweg + Teubner, Wiesbaden 1980, ISBN 3-519-02221-4 (17. aktualisierte Auflage. ebenda 2009, ISBN 978-3-8348-0777-9), S. 270–271 (Auszug (Google))
Weblinks
- Quotientenregel auf Wikibooks