Differenzenmenge

aus Wikipedia, der freien Enzyklopädie
(Weitergeleitet von Singer-Zyklus)

Eine Differenzenmenge der Ordnung n[1] (englisch: perfect difference set[2]) ist in der endlichen Geometrie eine Menge von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n+1} natürlichen Zahlen[3], aus der sich eine eindeutige projektive Ebene erzeugen lässt. James Singer konnte in den 1930er Jahren beweisen, dass jede endliche desarguessche Ebene von einer Differenzenmenge abstammt.[2] Diese Tatsache ist eine der Aussagen des Satzes von Singer, der darüber hinaus besagt, dass jede endliche desarguessche projektive Geometrie einen Singer-Zyklus besitzt. Es wird vermutet, ist aber (2012) noch nicht bewiesen, dass genau die desarguesschen endlichen Ebenen von einer Differenzenmenge abstammen.[1]

Definitionen

Es sei n eine natürliche Zahl. Eine Menge Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathcal{D}} von natürlichen Zahlen heißt eine Differenzenmenge der Ordnung n, falls gilt[1]

  1. Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathcal{D}} enthält genau Elemente,
  2. jede natürliche Zahl Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle m\in \{1,2,3,\ldots, n^2+n\}} lässt sich auf genau eine Weise schreiben als Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle m\equiv d_1-d_2 \mod (n^2+n+1)} mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle d_1,d_2\in\mathcal{D}.}

Die zweite Bedingung lässt sich formal abschwächen. Sei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Delta(\mathcal{D})=\{ (d,d) | d\in \mathcal{D}\}} die Diagonale in Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle {\mathcal {D}}^{2}} . Dann ist die 2. Bedingung zunächst gleichwertig zu der abstrakter formulierten Bedingung

(2a) Die Abbildung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \delta: \mathcal{D}^2 \setminus \Delta(\mathcal{D})\rightarrow \{1,2,3,\ldots, n^2+n\}: (d_1,d_2)\mapsto d_1-d_2 \mod (n^2+n+1)} ist bijektiv.[4]

Da für eine Menge Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathcal{D}} , die der 1. Bedingung gemäß Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n+1} Elemente enthält, die Menge Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathcal{D}^2 \setminus \Delta(\mathcal{D})} der Paare unterschiedlicher Zahlen immer Elemente enthält, ist die Definitionsmenge von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \delta} immer gleichmächtig zur Zielmenge, daher sind für diese Abbildung Surjektivität, Injektivität und Bijektivität gleichwertige Forderungen und die 2. Bedingung kann durch

(2b) „Für Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle d_{1},d_{2}\in {\mathcal {D}},d_{1}\neq d_{2}} sind die Differenzen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle d_1-d_2\mod (n^2+n+1)} paarweise verschiedene Zahlen (mit anderen Worten: Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \delta} ist injektiv).“ oder durch
(2c) „Jede natürliche Zahl Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle m\in \{1,2,3,\ldots ,n^{2}+n\}} tritt modulo Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n^2+n+1} als Differenz auf (mit anderen Worten: Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \delta} ist surjektiv).“

ersetzt werden.

Reduzierte Differenzenmenge

  • Ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathcal{D}} eine Differenzenmenge der Ordnung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n} , dann sind auch die Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle n^{2}+n+1} verschiedenen Mengen Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle {\mathcal {D}}+i=\{d+i\mod (n^{2}+n+1)|d\in {\mathcal {D}}\}} für beliebige Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle i\in \{ 0,1,2,\ldots, n^2+n\}} solche Differenzenmengen.
  • Jede Differenzenmenge Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathcal{D}} der Ordnung enthält genau zwei verschiedene Elemente Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle d_{1},d_{2}} mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle d_1+1\equiv d_2 \mod (n^2+n+1).} Dann ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathcal{D}-d_1=\{0,1,\ldots k_{n+1}\}} ebenfalls eine solche Differenzenmenge.

Singer verwendet Differenzenmengen, die 0 und 1 enthalten und deren Elemente alle in Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \{0,1,2,\ldots, n^2+n-1\}} liegen, als Normalformen für Differenzenmengen und bezeichnet eine solche Differenzenmenge dann als reduzierte Differenzenmenge (englisch: reduced perfect difference set).[2] Beutelspacher und Rosenbaum verwenden als Normalenform Mengen, die 1 und 2 enthalten und deren Elemente alle in Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \{1,2,3,\ldots, n^2+n\}} liegen, ohne dafür eine gesonderte Bezeichnung einzuführen.[1] Es gilt:

Falls eine Differenzenmenge der Ordnung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n} existiert, dann existiert auch eine solche, die 0 und 1 enthält (also eine reduzierte Differenzenmenge), der Ordnung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n} .

Eigenschaften und Bedeutung

Projektive Ebene

Ist eine Differenzenmenge der Ordnung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n\geq 2} , dann ist die folgendermaßen definierte Geometrie Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle \mathop {\mathrm {P} } ({\mathcal {D}})} eine projektive Ebene der Ordnung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n} :[1]

  1. Die Punktmenge ist die Menge Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathfrak{P}= \{0,1,2,3,\ldots, n^2+n\}\subseteq \N_0} von natürlichen Zahlen,
  2. die Geradenmenge Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathfrak{G}} besteht aus den Teilmengen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathcal{D}+i\subseteq\mathfrak{P},\quad i\in \{0,1,2,\ldots, n^2+n\}} ,
  3. die Inzidenzrelation Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle I\subseteq (\mathfrak{P}\times \mathfrak{G})\cup (\mathfrak{G}\times \mathfrak{P})} von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathop{\mathrm P}(\mathcal{D})} ist die mengentheoretische Enthaltenrelation zusammen mit ihrer Umkehrung: Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle I={\in \cup \ni}.}

Man sagt dann: Die so definierte projektive Ebene Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle \mathop {\mathrm {P} } ({\mathcal {D}})=({\mathfrak {P}},{\mathfrak {G}},I)} „stammt von der Differenzenmenge Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathcal{D}} “ ab.

Singer-Zyklus, Satz von Singer

Sei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \kappa} eine Kollineation auf einer endlichen projektiven Geometrie. Wenn Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \kappa} die Punkte und Hyperebenen der Geometrie zyklisch permutiert, das heißt im Falle einer endlichen Ebene Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (\mathfrak{P},\mathfrak{G},I)} der Ordnung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n} : wenn für beliebige Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A\in \mathfrak{P}, g\in \mathfrak{G}} gilt

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \begin{array}{rrclcl} (1)\quad &\mathfrak{P}&=&\{ \kappa^i(A) &|& i\in\{1,2,3,\ldots, n^2+n+1\} \}\quad {\mathrm{und}}\\ (2)\quad &\mathfrak{G}&=&\{ \kappa^i(g) &|& i\in\{1,2,3,\ldots, n^2+n+1\} \} \end{array} }

dann heißt die von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \kappa} erzeugte Kollineationsgruppe Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle \langle \kappa \rangle } ein Singer-Zyklus der Geometrie, speziell der Ebene.[5]

Der Satz von Dembowski-Hughes-Parker besagt, dass eine Gruppe von Kollineationen einer projektiven Geometrie genau dann auf der Punktmenge transitiv operiert, wenn sie auf der Menge der Hyperebenen transitiv operiert.[6] Daraus folgt, dass die geforderten Eigenschaften (1) und (2) für zyklische Kollineationsgruppen auf einer Ebene äquivalent sind.

Die folgenden Aussagen werden als Satz von Singer bezeichnet:

  1. Jede endliche, desarguessche, projektive Geometrie besitzt einen Singer-Zyklus. Dieser kann so gewählt werden, dass er sogar nur aus Projektivitäten besteht.[7]
  2. Eine endliche projektive Ebene besitzt genau dann einen Singer-Zyklus, wenn sie isomorph zu einer von einer Differenzenmenge abstammenden Ebene ist.[8]

Ist Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle \mathop {\mathrm {P} } ({\mathcal {D}})=({\mathfrak {P}},{\mathfrak {G}},I)} eine solche Ebene in ihrer oben beschriebenen Darstellung durch die Differenzenmenge Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathcal{D}} , dann ist

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \kappa: \mathfrak{P}=\{0,1,2,3,\ldots, n^2+n\}\rightarrow \mathfrak{P};\quad x\mapsto x+1 \mod (n^2+n+1)}

eine Kollineation der Ordnung Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle n^{2}+n+1} , die somit einen Singer-Zyklus erzeugt.

Konstruktion von Singer-Zyklen auf einer desarguesschen Geometrie

Jede desarguessche projektive Geometrie endlicher Ordnung ist isomorph zu einem Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle d} -dimensionalen projektiven Raum über einem endlichen Körper Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle K=\mathbb{F}_q} . Der Koordinatenvektorraum von ist als -Vektorraum isomorph zu dem endlichen Körper Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle L=\mathbb{F}_{q^{d+1}}} . Die multiplikative Gruppe Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (L^\ast,\cdot)} ist zyklisch, also existiert ein erzeugendes („primitives“) Element Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \xi\in L} dieser Gruppe, mit dem Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \langle \xi \rangle=L^\ast} gilt. Die Abbildung

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Xi: K^{d+1}\rightarrow K^{d+1}:\quad v\mapsto \xi\cdot v}

ist ein Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle K} -Vektorraumautomorphismus. Nach Wahl einer Punktbasis in kann dieser Automorphismus als Koordinatendarstellung einer Projektivität angesehen werden. Da transitiv auf Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle V^{\ast }\cong \left(K^{d+1}\right)^{\ast }} operiert, operiert auch die dadurch dargestellte Projektivität transitiv auf der Punktmenge von und erzeugt daher einen Singer-Zyklus dieser projektiven Geometrie.

Beispiele

Die Abbildung zeigt die Fano-Ebene und eine Projektivität c der Ordnung 7 (rot), die einen Singer-Zyklus erzeugt. Die Punkte (schwarz) sind so nummeriert, dass dieses Modell der Fano-Ebene von der Differenzenmenge abstammt, die Nummern der Geraden (blau) sind i aus der Geradendarstellung
  • Die Menge ist eine Differenzenmenge der Ordnung 2, denn die sämtlichen Differenzen von verschiedenen Elementen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle d_1,d_2\in \mathcal{D}_2} lauten (modulo 7):
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \begin{array}{rcl|rcl|rcl} 1-2 & \equiv & 6 & 1-4 & \equiv & 4 & 2-4 & \equiv & 5 \\ 2-1 & \equiv & 1 & 4-1 & \equiv & 3 & 4-2 & \equiv & 2 \end{array} }
Die 7 Geraden der projektiven Ebene zu dieser Differenzenmenge lauten, vergleiche auch die Abbildung rechts:
Die Ebene ist isomorph zur Fano-Ebene.
  • Die Mengen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathcal{D}_3=\{1,2,4,10\}} bzw. Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathcal{D}_4=\{1,2,5,15,17\}} sind Differenzenmengen der Ordnung 3 bzw. 4.
  • Die Menge Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathcal{D}_5=\{0,1,3,8,12,18\}} ist eine reduzierte Differenzenmenge der Ordnung 5.
  • Da zu den Ordnungen 6, 10, 12 und 14 keine projektiven Ebenen existieren, gibt es auch keine Differenzenmengen dieser Ordnungen.
  • Der Satz von Bruck-Ryser-Chowla liefert notwendige Bedingungen an die Ordnungen projektiver Ebenen. Natürliche Zahlen, die nach diesem Satz ausgeschlossen sind (Folge A046712 in OEIS), können auch nicht Ordnungen einer Differenzenmenge sein.

Literatur

  • Albrecht Beutelspacher, Ute Rosenbaum: Projektive Geometrie. Von den Grundlagen bis zu den Anwendungen (= Vieweg Studium: Aufbaukurs Mathematik). 2., durchgesehene und erweiterte Auflage. Vieweg, Wiesbaden 2004, ISBN 3-528-17241-X (Inhaltsverzeichnis [abgerufen am 1. April 2012]).
  • Daniel Hughes, Fred Piper: Projective planes (= Graduate texts in mathematics. Band 6). Springer, Berlin/Heidelberg/New York 1973, ISBN 3-540-90044-6.
  • James Singer: A theorem in projective geometry and some applications to number theory. In: Transactions of the American Mathematical Society. Band 43, Nr. 3, 1938, S. 377–385 (Volltext, PDF [abgerufen am 1. April 2012]).

Einzelnachweise und Anmerkungen

  1. a b c d e Beutelspacher & Rosenbaum (2004)
  2. a b c Singer (1938)
  3. Im vorliegenden Artikel wird die 0 stets zu den natürlichen Zahlen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \N_0=\{0,1,2,3,\ldots\}} gezählt.
  4. Man beachte dazu, dass Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \delta} aufgrund der Eigenschaften der Modulo-Funktion mod stets eine Abbildung ist.
  5. Zu Ehren von James Singer siehe Literatur, Beutelspacher & Rosenbaum (2004), 2.8
  6. Hughes & Piper (1973)
  7. Beutelspacher & Rosenbaum (2004), Kapitel 6
  8. Beutelspacher & Rosenbaum (2004), Sätze 2.8.4, 2.8.5