Neutronen-Transmutationsdotierung

aus Wikipedia, der freien Enzyklopädie
Dies ist die aktuelle Version dieser Seite, zuletzt bearbeitet am 17. Juli 2016 um 20:17 Uhr durch imported>Kein Einstein(481711) (HC: Entferne Kategorie:Physikalisch-technisches Verfahren).
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)

Neutronen-Transmutationsdotierung (NTD, kurz n-Transmutationsdotierung oder „Neutronendotierung“) ist ein Verfahren, um in Silicium eine höchst homogene Dotierung mit Phosphor zu erreichen. Die Dotierung von Gallium mit Arsen ist mit diesem Verfahren ebenfalls möglich. Das zu dotierende Substrat wird dabei mit thermischen Neutronen aus eine Neutronenquelle beschossen. Das NTD-Verfahren wird im Folgenden anhand von Silicium beschrieben.

Einige der im natürlichen Silicium vorhandenen stabilen 30Si-Isotope absorbieren im Rahmen einer Neutronenanlagerung ein Neutron und werden unter Emission von Gammastrahlung zu 31Si:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathrm{{}^{30}Si\ + n \longrightarrow {}^{31}Si + \gamma}}

Das instabile 31Si-Isotop zerfällt mit einer Halbwertszeit von 2,62 Stunden zu 31P. Dabei werden Elektronen freigesetzt (Betastrahlung):

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathrm{{}^{31}Si\ \stackrel{2,62\,\mathrm{h}} \longrightarrow\ {}^{31}P + \beta^-}}

Die noch während der Neutronenbestrahlung entstehenden Phosphor-Atome sind ebenfalls der Neutronenbestrahlung ausgesetzt, weshalb bei einigen dieser Atome weitere Reaktionen ablaufen, die das transmutierte Material eine Zeit lang radioaktiv machen:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathrm{{}^{31}P\ + n \longrightarrow {}^{32}P + \gamma}}

Die Umwandlung von 32P in 32S erfolgt mit einer Halbwertszeit von 14,3 Tagen:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathrm{{}^{32}P\ \stackrel{14,3\,\mathrm{d}} \longrightarrow\ {}^{32}S + \beta^-}}

Durch die Strahlenschädigung ist das Kristallgitter sehr stark gestört, es wird deshalb in einem nachfolgenden Temperschritt bei 700 bis 800 °C ausgeheilt.

Die Zahl der erzeugten Phosphor-Atome ist proportional der Bestrahlungszeit und dem Neutronenfluss. Zusammen mit der der geringen Absorption thermischer Neutronen in Silicium lassen sich so sehr homogen dotierte Proben gewinnen. Das Verfahren wird daher bei der Grunddotierung von Substraten vor allem für Bauelemente der Leistungselektronik eingesetzt.

Das stabile Isotop 30Si hat in Silicium einen Anteil von etwa 3,1 %, die Atomdichte von Silicium beträgt 5·1022 cm−3. Mit dem NTD-Verfahren kann deshalb eine hohe Phosphordotierung von bis zu 1020 cm−3 erreicht werden und hat damit, neben der Homogenität der Dotierung, einen weiteren Vorteil gegenüber anderen Dotierverfahren.

Literatur

  • Rolf Sauer: Halbleiterphysik: Lehrbuch für Physiker und Ingenieure. Oldenbourg, 2009, ISBN 3-486-58863-X.
  • Wilhelm T. Hering: Angewandte Kernphysik. Teubner, Stuttgart 1999, ISBN 3-519-03244-9.
  • Josef Lutz: Halbleiter-Leistungsbauelemente. Springer, Berlin 2006, ISBN 3-540-34206-0.
  • Adolph Blicher: Field-Effect and Bipolar Power Transistor Physics. Academic Press, Inc., New York 1981, ISBN 0-12-105850-6.
  • Roland Schindler, Wolfgang R. Fahrner: Kurs 02175 Halbleitertechnik I. FernUniversität in Hagen, Hagen 1997.