Dies ist die
aktuelle Version dieser Seite, zuletzt bearbeitet am 18. Juli 2018 um 13:38 Uhr durch
imported>L47(533607) .
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Als einelementige Menge, Elementarmenge, Einermenge oder (englisch) Singleton werden in der Mathematik diejenigen Mengen bezeichnet, die genau ein Element enthalten. Eine Menge ist also einelementig, genau dann, wenn sie die Mächtigkeit eins hat. Beispielsweise ist eine einelementige Menge, aber auch , denn hier ist das einzige Element die Menge (welche wiederum nicht einelementig ist).
Die Existenz von einelementigen Mengen folgt in der Zermelo-Fraenkel-Mengenlehre aus dem Paarmengenaxiom, welches besagt, dass für Mengen und auch Menge ist. Wählt man , so ist . Die Existenz der einelementigen Menge, die die leere Menge enthält, folgt hierbei unter Benutzung des Leermengenaxioms.
In von Neumanns Modell der natürlichen Zahlen enthält jede natürliche Zahl genau Elemente, die einzige einelementige Zahl ist also .
Ist eine beliebige Menge und ist eine einelementige Menge, so gibt es genau eine Funktion von nach , nämlich . Damit ist die Menge aller Funktionen von nach , , ebenfalls eine einelementige Menge.
In der Kategorie der Mengen sind Einermengen terminale Objekte und zueinander isomorph. Die letzte Aussage im vorausgehenden Absatz kann dort also als die einfache Gleichung formuliert werden.
Äquivalenzen
ist Element von genau dann, wenn .
und haben leeren Schnitt genau dann, wenn ungleich genau dann, wenn ungleich .
genau dann, wenn .