Fermatscher Polygonalzahlensatz

aus Wikipedia, der freien Enzyklopädie
Dies ist die aktuelle Version dieser Seite, zuletzt bearbeitet am 10. Mai 2019 um 12:39 Uhr durch imported>PerfektesChaos(310926) (tk k).
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)

Der fermatsche Polygonalzahlensatz ist ein mathematischer Satz aus der Zahlentheorie. Er besagt, dass jede natürliche Zahl als Summe von höchstens Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n} n-Eckszahlen darstellbar ist. Ein bekannter Spezialfall ist der Vier-Quadrate-Satz, dem zufolge jede Zahl als Summe von vier Quadratzahlen geschrieben werden kann. Ein Beispiel:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 310 = 17^2 + 4^2 + 2^2 + 1^2 = 289 + 16 + 4 + 1}

Der fermatsche Polygonalzahlensatz ist nach Pierre de Fermat benannt, von dem folgendes Zitat stammt:

„Ich war der erste, der den sehr schönen und vollkommen allgemeinen Satz entdeckt hat, dass jede Zahl entweder eine Dreieckszahl oder die Summe von zwei oder drei Dreieckszahlen ist; jede Zahl eine Quadratzahl oder die Summe von zwei, drei oder vier Quadratzahlen ist; entweder eine Fünfeckszahl oder die Summe von zwei, drei, vier oder fünf Fünfeckszahlen; und so weiter bis ins Unendliche, egal ob es ein Frage von Sechsecks-, Siebenecks- oder beliebigen Polygonalzahlen ist. Ich kann den Beweis, der von vielen und abstrusen Mysterien der Zahlen abhängt, hier nicht angeben; deswegen beabsichtige ich diesem Subjekt ein ganzes Buch zu widmen und in diesem Teil arithmetisch erstaunliche Fortschritte gegenüber den vorhergehenden bekannten Grenzen zu erbringen.“[1]

Ein solches Buch hat Fermat jedoch nie veröffentlicht. Joseph Louis Lagrange bewies 1770 den Spezialfall des Vier-Quadrate-Satzes[2] und Carl Friedrich Gauß 1796 (unveröffentlicht, er gab aber Beweise für den Fall der Quadrate und Kuben in seinen Disquisitiones arithmeticae) und Legendre (1798) den Spezialfall für Dreieckszahlen.[3] Der Beweis des vollständigen Satzes gelang jedoch erst Augustin Louis Cauchy im Jahr 1815.[4] Der Beweis von Cauchy galt damals als Sensation und machte ihn berühmt.[5]

Beweisstruktur

Für den Beweis des Fermatschen Polygonalzahlensatzes werden zunächst die Beweise des Dreieckszahlensatzes sowie des Vier-Quadrate-Satzes vorausgesetzt. Für wird nun das Lemma von Cauchy bewiesen, welches besagt, dass für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a,b \in \mathbb{N^u}} mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle b^2<4a} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 3a<b^2+2b+4} Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x,y,z,u} existieren mit folgenden Eigenschaften:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a=x^2+y^2+z^2+u^2 \text{ und } b=x+y+z+u}

Mithilfe dieses Satzes kann nun der Fermatsche Polygonalzahlensatz bewiesen werden, indem Bedingungen aufgestellt werden, unter denen die Voraussetzungen des Cauchyschen Lemmas gelten.[6]

Weblinks

Einzelnachweise

  1. Leonard Eugene Dickson: History of the Theory of Numbers. Volume 2: Diophantine Analysis. Dover Publications, Mineola NY 2005, ISBN 0-486-44233-0, S. 6.
  2. Joseph Louis Lagrange: Démonstration d’un théoreme d’Arithmétique. In: Nouveaux Mémoires de l’Académie Royale des Sciences et Belles-Lettres, 1770. Berlin 1772, S. 123–133.
  3. Am 10. Juli 1796 schrieb Gauß in sein Tagebuch: „EYPHKA num = Δ + Δ + Δ“. Ein Beweis findet sich in Hermann Maser (Hrsg.): Carl Friedrich Gauss’ Untersuchungen über Höhere Arithmetik. Berlin: Springer, 1889, S. 333–334, Art. 293.
  4. Augustin Louis Cauchy: Démonstration du théorème général de Fermat sur les nombres polygones. In: Mémoires de la classe des sciences mathématiques et physiques de l’Institut de France 14 (1813–1815), S. 177–220.
  5. Bruno Belhoste: Augustin-Louis Cauchy. A Biography. New York: Springer, 1991, S. 46.
  6. Melvyn B. Nathanson: A Short Proof of Cauchy’s Polygonal Number Theorem. In: Proceedings of the American Mathematical Society. Band 99, Nr. 1, 1987, S. 22–24, doi:10.2307/2046263.