Solovay-Strassen-Test
Der Solovay-Strassen-Test (nach Robert M. Solovay und Volker Strassen) ist ein probabilistischer Primzahltest. Der Test prüft für eine ungerade Zahl n, ob sie prim oder zusammengesetzt ist. Im letzteren Fall liefert der Test jedoch im Allgemeinen keinen Faktor der Zahl n.
Der Solovay-Strassen-Test ist, wie der Miller-Rabin-Test, ein Monte-Carlo-Algorithmus. Das heißt, er liefert nur mit einer gewissen Wahrscheinlichkeit (50 %) eine Aussage. Durch Wiederholung kann diese Wahrscheinlichkeit aber beliebig vergrößert werden. Ergibt der Test (wiederholt) keine Aussage, so lässt sich dies als „n ist wahrscheinlich eine Primzahl“ interpretieren.
Vorgehensweise
Zu einer ungeraden Zahl , welche auf Primzahleigenschaft zu testen ist, wird zufällig eine natürliche Zahl mit gewählt. Bei mehrfacher Durchführung des Tests sind für jeweils neue Werte zu wählen.
- Es wird der größte gemeinsame Teiler berechnet. Falls gilt, so ist ein echter Teiler von . Damit ist keine Primzahl und der Test wird beendet.
- Berechne
- Gilt , so kann nach dem Satz von Euler keine Primzahl sein und der Test wird beendet. Ist aber oder , kann es sich bei um eine Eulersche Pseudoprimzahl handeln und der folgende Schritt muss noch ausgeführt werden.
- Berechne das Jacobi-Symbol . Falls eine Primzahl ist, so muss gelten. Gilt dies nicht, kann keine Primzahl sein und der Test ist beendet.
- Falls die Berechnungen nacheinander oder ergeben, liefert der Solovay-Strassen-Test keine Aussage, ist also eventuell eine Primzahl.
Bewertung
Um die Güte des Solovay-Strassen-Tests zu bewerten, muss unterschieden werden, ob eine Primzahl ist oder nicht.
- Falls eine Primzahl ist, liefert der Test immer das korrekte Ergebnis (nämlich „keine Aussage“).
- Falls keine Primzahl ist, ist die Wahrscheinlichkeit, im ersten Schritt des Tests ein Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a} zu wählen, so dass der Test ein falsches Ergebnis liefert, kleiner als 1/2 (siehe unten: Falsche Zeugen).
Um die Güte des Tests für Nichtprimzahlen zu erhöhen, wird der Test mit unabhängig gewählten zufälligen Basen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a} hinreichend oft wiederholt. Wenn der Test Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle k} -mal wiederholt wird, dann ist die Wahrscheinlichkeit, dass in allen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle k} Wiederholungen das Ergebnis „keine Aussage“ lautet (obwohl Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n} keine Primzahl ist), kleiner als Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 1/2^k} . Dies ist eine pessimistische Schätzung – in den meisten Fällen wird die Güte wesentlich besser sein.
Effizienz
Der Solovay-Strassen-Test ist effizient, da der ggT, die Potenzen und das Jacobi-Symbol effizient berechnet werden können.
Beispiel
Am Beispiel der zusammengesetzten Zahl Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n = 91} (einer Fermatschen Pseudoprimzahl zu – beispielsweise – den Basen 17, 29) wird ein möglicher Ablauf des Tests gezeigt:
Ist 91 eine Primzahl?
Test 1:Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a = 29}
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle g = \operatorname{ggT}(29,91) = 1,\,\, b = 29^{45} \equiv 1 (\text{mod }\, 91),\,\, J(29,91) = 1 \equiv b \text{ mod } 91 \implies \text{ Primzahl nicht ausgeschlossen }}
Test 2: Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a = 17}
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle g = \operatorname{ggT}(17,91) = 1,\,\, b = 17^{45} \equiv -1 (\text{mod }\, 91),\,\, J(17,91) = -1 \equiv b \text{ mod } 91 \implies \text{Primzahl nicht ausgeschlossen}}
Test 3: Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a = 23}
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle g = \operatorname{ggT}(23,91) = 1,\,\, b = 23^{45} \equiv 64 (\text{mod }\, 91) \implies \text{keine Primzahl}}
Falsche Zeugen
Sei n > 2 eine ungerade, zusammengesetzte Zahl.
Eine zu Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n}
teilerfremde Zahl Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a}
heißt falscher Zeuge für die Primalität von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n}
bezüglich des Solovay-Strassen-Tests, falls
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a^{\frac{n-1}{2}} \equiv J(a,n) \mod n} .
Für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n = 91} sind also die Basen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a = 17, 29} falsche Zeugen. Da die Menge der falschen Zeugen eine Untergruppe der multiplikativen Gruppe Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (\mathbb{Z}/n)^*} mit Ordnung kleiner oder gleich Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \frac{\varphi(n)}{2}} bildet (dabei bezeichnet Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \varphi} die Eulersche φ-Funktion, die die Anzahl der teilerfremden Zahlen kleiner als Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n} angibt) und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \varphi(n) < n} gilt, sind höchstens die Hälfte aller zur Auswahl stehenden Basen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a} falsche Zeugen. Daher erreicht man bei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle k} Durchläufen eine Wahrscheinlichkeit für einen Fehler (d. h., eine zusammengesetzte Zahl wird nicht als solche erkannt), die kleiner als Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 1/2^k} ist.
Was steckt hinter dem Solovay-Strassen-Test?
Der Solovay-Strassen-Test beruht auf zwei Primzahl-Eigenschaften:
Die eine ist der Eulersche Satz: Für jede Primzahl p > 2 gilt
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a^{\frac{p-1}{2}} \equiv \pm 1 \mod p} .
Mit diesem Kriterium werden alle Zahlen herausgesiebt, die weder Primzahlen noch Eulersche Pseudoprimzahlen zur Basis a sind.
Die andere Eigenschaft verbindet dies mit dem Legendre-Symbol: Für jede Primzahl p > 2 gilt
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a^{\frac{p-1}{2}} \equiv \Big(\frac{a}{p}\Big)\mod p} .
Da man bei den zu testenden Zahlen nicht davon ausgehen darf, dass es sich um Primzahlen handelt, benutzt man das Jacobi-Symbol.
Mit diesem Kriterium fallen auch die Euler-Jacobi-Pseudoprimzahlen heraus.
Literatur
- Paulo Ribenboim: Die Welt der Primzahlen, Springer Verlag, 1996, S. 97