Basissatz von Burnside

aus Wikipedia, der freien Enzyklopädie
Dies ist die aktuelle Version dieser Seite, zuletzt bearbeitet am 9. November 2019 um 14:33 Uhr durch imported>Ephraim33(96411) (kat).
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)

Der Basissatz von Burnside ist ein Resultat aus der Gruppentheorie. Er besagt, dass in einer endlichen p-Gruppe alle nichtverkürzbaren Erzeugendensysteme gleichviele Elemente enthalten. Die Anzahl d der Elemente in einem nichtverkürzbaren Erzeugendensystem ist dabei die Dimension der Faktorgruppe nach der Frattinigruppe. Da diese Faktorgruppe elementarabelsch ist, kann sie als Vektorraum über dem Körper mit p Elementen aufgefasst werden und hat daher eine Dimension d als Vektorraum; ihre Kardinalität ist dann gleich pd. Der Basissatz von Burnside sagt außerdem aus, dass jedes Gruppenelement, das nicht in der Frattinigruppe liegt, in einem nichtverkürzbaren Erzeugendensystem enthalten ist.

Literatur

  • Bertram Huppert: Endliche Gruppen I. Springer-Verlag, Berlin u. a. 1979. ISBN 3-540-03825-6. Kap. III, Par. 3, Satz 3.15, Seite 273.