Verbindbarkeitssatz von Menger

aus Wikipedia, der freien Enzyklopädie
Dies ist die aktuelle Version dieser Seite, zuletzt bearbeitet am 11. Mai 2020 um 21:26 Uhr durch imported>1234qwer1234qwer4(1824074) (HC: Ergänze Kategorie:Satz (Geometrie)).
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)

Der Verbindbarkeitssatz von Menger ist ein mathematischer Lehrsatz über eine grundlegende Fragestellung der Theorie der metrisch konvexen Räume und als solcher angesiedelt im Übergangsfeld zwischen den beiden mathematischen Gebieten Topologie und Geometrie. Der Satz geht (ebenso wie das Konzept des metrisch konvexen Raums) auf eine Arbeit des österreichischen Mathematikers Karl Menger aus den Jahren 1928 zurück.[1][2][3]

Formulierung des Satzes

Der Satz lässt sich angeben wie folgt:[1][2][3]

Gegeben sei ein vollständiger metrischer und zugleich metrisch konvexer Raum .
Dann gilt:
Zwischen je zwei Raumpunkten eines beliebigen Abstands gibt es stets eine kürzeste Verbindung in dem Sinne, dass das zugehörige reelle Intervall eine isometrische Einbettung Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle \phi \colon [0,A]\rightarrow (X,d)} gestattet, welche die reelle Zahl auf Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle x=\phi (0)} und die reelle Zahl auf abbildet.

Verwandte Resultate

Mit dem mengerschen Verbindbarkeitssatz verwandt ist ein anderer Satz, dem eine ähnliche Fragestellung zugrunde liegt und der auf Stefan Mazurkiewicz zurückgeht:[4]

In einem topologischen Raum , der vollständig metrisierbar, zusammenhängend und lokal zusammenhängend ist, gibt es zu je zwei verschiedenen Raumpunkten stets eine offene Jordan-Kurve , welche mit verbindet.

Im Zusammenhang damit – und nicht weniger auch im Zusammenhang mit dem Verbindbarkeitssatz von Menger – ist ein weiterer Satz erwähnenswert, der unmittelbar folgt und von Ákos Császár in dessen Monographie General Topology als Satz von Mazurkiewicz-Moore-Menger (englisch Mazurkiewicz-Moore-Menger theorem) bezeichnet wird. Dieser Satz lautet:[5][6]

Ist ein vollständiger metrischer Raum sowohl zusammenhängend als auch lokal zusammenhängend, so ist er schon bogenweise zusammenhängend und lokal bogenweise zusammenhängend.

Anmerkungen zum Beweis des Satzes

Karl Menger hat den Verbindbarkeitssatz unter Anwendung der Transfiniten Induktion hergeleitet. Im Jahre 1935 gab Nachman Aronszajn einen Beweis ohne Transfinite Induktion.[1] Kazimierz Goebel und William A. Kirk[7] haben in ihrer 1990er Monographie Topics in Metric Fixed Point Theory gezeigt, dass man in Anlehnung an den Originalbeweis von Menger einen Beweis führen kann, der anstelle der Transfiniten Induktion einen Fixpunktsatz benutzt. Wie Goebel und Kirk darstellen, ist dieser Fixpunktsatz eine Verallgemeinerung des banachschen Fixpunktsatzes und geht auf eine Publikation von James Caristi aus dem Jahre 1976 zurück. Sie bezeichnen diese Verallgemeinerung als Satz von Caristi (englisch Caristi’s theorem).[8][9]

Der Satz von Caristi

Der Satz besagt das Folgende:[10]

Gegeben seien ein vollständiger metrischer Raum sowie eine unterhalbstetige und zudem nach unten beschränkte reellwertige Funktion Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle \psi \colon (X,d)\rightarrow \mathbb {R} } .
Hier sei Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle f\colon \,X\to X} eine beliebige Abbildung, welche die folgende Bedingung erfüllen möge:
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle d(x,f(x)) \leq {\psi(x) - \psi(f(x))}}
Dann besitzt einen Fixpunkt.

Siehe auch

Literatur

  • N. Aronszajn: Neuer Beweis der Streckenverbundenheit vollständiger konvexer Räume. In: Ergebnisse eines mathematischen Kolloquiums (Wien). Band 6, 1935, S. 45–56.
  • Leonard M. Blumenthal: Theory and Applications of Distance Geometry (= Chelsea Scientific Books). 2. Auflage. Chelsea Publishing Company, New York 1970, ISBN 0-8284-0242-6 (MR0268781).
  • James Caristi: Fixed point theorems for mappings satisfying inwardness conditions. In: Transactions of the American Mathematical Society. Band 215, 1976, S. 241–251, doi:10.2307/1999724, JSTOR:1999724 (MR0394329).
  • Ákos Császár: General Topology. 2. Auflage. Adam Hilger Ltd., Bristol 1978, ISBN 0-85274-275-4 (MR0474162).
  • Lutz Führer: Allgemeine Topologie mit Anwendungen. Vieweg Verlag, Braunschweig 1977, ISBN 3-528-03059-3.
  • Kazimierz Goebel, W. A. Kirk: Topics in Metric Fixed Point Theory (= Cambridge Studies in Advanced Mathematics. Band 28). Cambridge University Press, Cambridge 1990, ISBN 0-521-38289-0 (MR1074005).
  • Karl Menger: Untersuchungen über allgemeine Metrik. In: Mathematische Annalen. Band 100, 1928, S. 75–163 (uni-bielefeld.de).
  • R. L. Moore: On the foundations of plane analysis situs. In: Transactions of the American Mathematical Society. Band 17, 1916, S. 131–164 (ams.org).
  • J. van Mill: The Infinite-dimensional Topology of Function Spaces (= North-Holland Mathematical Library. Band 64). North-Holland, Amsterdam (u. a.) 2002, ISBN 0-444-50557-1.
  • Willi Rinow: Die innere Geometrie der metrischen Räume (= Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen mit besonderer Berücksichtigung der Anwendungsgebiete. Band 105). Springer Verlag, Berlin / Göttingen / Heidelberg 1961 (MR0123969).

Einzelnachweise und Fußnoten

  1. a b c Leonard M. Blumenthal: Theory and Applications of Distance Geometry. 1953, S. 32 ff, S. 41
  2. a b Kazimierz Goebel, W. A. Kirk: Topics in Metric Fixed Point Theory. 1990, S. 23–26
  3. a b Willi Rinow: Die innere Geometrie der metrischen Räume. 1961, S. 146 ff., S. 148
  4. J. van Mill: The Infinite-dimensional Topology of Function Spaces. 2002, S. 55
  5. Ákos Császár: General Topology. 1978, S. 428
  6. Der Name "Moore" verweist auf Robert Lee Moore, der in einer Arbeit aus dem Jahr 1916 schon derartige Verbindbarkeitsfragen behandelt hat. Siehe hierzu auch die Monographie Allgemeine Topologie mit Anwendungen. von Lutz Führer (Vieweg Verlag, Braunschweig 1977, S. 153 ff)!
  7. Vgl. Artikel "William Arthur Kirk" (englischsprachige Wikipedia)!
  8. Goebel et al., op. cit., S. 9,13,24–25
  9. In der anglo-amerikanischen Fachliteratur wird der Satz auch Caristi fixed-point theorem genannt. Vgl. Artikel "Caristi fixed-point theorem" (englischsprachige Wikipedia)!
  10. Goebel et al., op. cit., S. 13