Teilsummenproblem

aus Wikipedia, der freien Enzyklopädie
Dies ist die aktuelle Version dieser Seite, zuletzt bearbeitet am 31. August 2020 um 09:32 Uhr durch imported>회기-로(3342204) (Das ist so kein korrektes Deutsch. Die letzte Textänderung von Anion21 wurde verworfen und die Version 181997760 von Aka wiederhergestellt.).
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)

Das Teilsummenproblem (auch Untermengensummenproblem, engl. subset sum problem) ist ein berühmtes Problem der Informatik und des Operations Research. Es ist ein spezielles Rucksackproblem.

Problembeschreibung

Gegeben sei eine Menge von ganzen Zahlen . Gesucht ist eine Untermenge, deren Elementsumme maximal, aber nicht größer als eine gegebene obere Schranke ist (oft ist auch gefragt, die Schranke exakt zu erreichen).

Formal: Gesucht sind , die maximieren unter der Nebenbedingung .

NP-Vollständigkeit

Das Problem ist NP-vollständig und somit vermutlich nicht effizient lösbar. Es kann mit der Branch-and-Bound-Methode gelöst werden.

Der Beweis der NP-Schwere erfolgt durch eine Reduktion von 3-SAT. Für eine gegebene Klauselmenge mit den Variablen werden die Dezimalzahlen sowie die Schranke anhand einer Tabelle konstruiert. Es wird vorausgesetzt, dass keine Klauseln vorhanden sind, die und gleichzeitig enthalten; dies ist keine Einschränkung, da eine solche Klausel immer erfüllt wäre und somit weggelassen werden kann, ohne den Sinn zu verändern.

Beispielsweise wird die Formel wie folgt verarbeitet (eine Erklärung folgt nach der Tabelle).

1 0 0 1 1 0
1 0 0 0 0 1
0 1 0 0 1 0
0 1 0 1 0 1
0 0 1 1 1 0
0 0 1 0 0 1
0 0 0 1 0 0
0 0 0 2 0 0
0 0 0 0 1 0
0 0 0 0 2 0
0 0 0 0 0 1
0 0 0 0 0 2
1 1 1 4 4 4
  • Die Ziffern einer Zeile werden als Stellen einer Dezimalzahl aufgefasst.
  • Die ersten 2n Zeilen sind lediglich eine Codierung der Formel selbst: besagt, dass Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x_1} in den Klauseln Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle C_1} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle C_2} , aber nicht Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle C_3} vorkommt. Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle w_2} setzt das für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \overline{x_1}} um, Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle w_3} für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x_2} , Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle w_4} für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \overline{x_2}} etc.
  • Die Zeilen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle w_{2n+1}} bis Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle w_{2n+2m}} sind "Korrekturzeilen", die nur auf der Diagonalen jeweils abwechselnd den Wert 1 oder 2 haben.
  • Die Zahl Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle c} besteht nur aus n Einsen und m Vieren. Dies bewirkt, dass bei Addition der Spaltenwerte, an den ersten n Stellen nur entweder Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle w_1} oder Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle w_2} ; Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle w_3} oder Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle w_4} etc. ausgewählt werden kann, wodurch in der Formel Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x_i} auf true oder false gesetzt wird. Die Vieren sind so gewählt, dass zusätzlich zu den beiden Korrekturwerten, die zusammen nur 1+2=3 ergeben, noch mindestens eine der Variablen in den Klauseln vorhanden sein muss, um auf 4 zu kommen. Sind mehr Variablen verfügbar, können entsprechend Korrekturzeilen weggelassen werden.

Besitzt nun die boolesche Formel eine erfüllende Belegung, so nehmen wir falls Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x_i} =true die Zahl Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle w_{2i-1}} auf; falls Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x_i} =false die Zahl Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle w_{2i}} . Damit sind schon die Einsen in Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle c} korrekt. Da alle Klauseln erfüllt sind, ist in den gerade hinzugefügten Zahlen in jeder Klausel mindestens eine erfüllte Variable vorhanden, somit sind die Spaltensummen im rechten Teil schon mindestens 1 und höchstens 3. Nun muss man nur noch die Korrekturvariablen geeignet wählen um auf 4 zu kommen. Mit der konstruierten Menge ist es so möglich, genau Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle c} zu erreichen, wenn die Formel erfüllbar ist.

Wenn nun Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle c} genau erreicht werden kann, so muss die Teilmenge der Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle w_i} zunächst jeweils genau ein Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle w_1} oder Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle w_2} ; Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle w_3} oder Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle w_4} etc. enthalten, weil sonst die Einsen in Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle c} nicht erfüllt wären. Somit ist gewährleistet, dass eine Variable tatsächlich true oder false (und nicht keins oder beides) ist. Durch diese Auswahl der Teilmenge muss dann auch jede Klausel erfüllt sein, denn wenn in einer Klausel keine Variable durch die Belegung erfüllt wäre, so würde die Addition nicht die notwendige Vier in Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle c} ergeben. Daher ist die boolesche Formel insgesamt erfüllbar.

Literatur

  • Soma, Nei Y. Toth, Paolo: An exact algorithm for the subset sum problem. European Journal of Operational Research 136 S. 57–66
  • Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, und Clifford Stein. Algorithmen – Eine Einführung., Oldenbourg-Verlag, 2004. ISBN 3-486-27515-1. Seiten 1017ff.