Satz von Erdős (Mengenlehre)

aus Wikipedia, der freien Enzyklopädie
Dies ist die aktuelle Version dieser Seite, zuletzt bearbeitet am 27. September 2020 um 16:02 Uhr durch imported>Aka(568) (→‎Beweis: Leerzeichen vor Satzzeichen entfernt).
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)

Der Satz von Erdős ist ein Lehrsatz der Mengenlehre, einem der Teilgebiete der Mathematik. Er geht auf den bedeutenden ungarischen Mathematiker Paul Erdős zurück.

Formulierung

Der Satz lässt sich angeben wie folgt:[1]

Sei die Mächtigkeit des Kontinuums mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathfrak {c}} bezeichnet.
Sei weiter Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A} eine Teilmenge der reellen Koordinatenebene Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle {\R}^2} , welche die folgende Eigenschaft habe:
Jede zur Abszissenachse parallele Gerade von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle {\R}^2} schneide Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A} in nur endlich vielen Punkten.
Dann gilt unter der Annahme der Gültigkeit des Auswahlaxioms die folgende Existenzaussage:
Es gibt in Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle {\R}^2} eine zur Ordinatenachse parallele Gerade, welche die Komplementärmenge Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle \complement {A}={\mathbb {R} }^{2}\setminus A} in Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathfrak {c}} Punkten schneidet.

Beweis

Zur Herleitung eines Widerspruchs sei die Annahme getroffen, dass die behauptete Existenzaussage falsch sei.

D. h.: Es gilt als angenommen:

Die Komplementärmenge Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \complement {A}} wird von jeder Parallelen der Ordinatenachse in weniger als Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathfrak {c}} Punkten geschnitten .

Dies ist dann insbesondere richtig für diejenigen Parallelen, welche die Geradengleichung:

  Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle (n\in \mathbb {N} )}

erfüllen.

Man hat also für alle

  Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle |\{n\}\times {\mathbb {R} }\cap \complement {A}|<{\mathfrak {c}}} .

Nun sei für

  Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle Q_{n}=\{y\in \mathbb {R} \mid (n,y)\in \complement {A}\}} .

Dann gilt

  Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle \{n\}\times Q_{n}=\{n\}\times {\mathbb {R} }\cap \complement {A}}

und folglich

  .

Daraus ergibt sich unter Anwendung des Satzes von König[2]

.

Damit muss

sein.

Folglich existiert ein dergestalt, dass für alle

Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle y_{0}\notin Q_{n}}

und damit

gilt.

Dies jedoch bedeutet, dass die zur Abszissenachse parallele Gerade

 

die Teilmenge in unendlich vielen Punkten schneidet, was im Widerspruch zu der vorausgesetzten Eigenschaft von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A} steht.

Damit erweist sich die obige Annahme als unhaltbar und folglich gilt die Behauptung.

Zusammenhang mit einem Resultat von Sierpiński

Der Satz von Erdős ist verbunden mit einem klassischen Theorem von Wacław Sierpiński aus dem Jahre 1919, welches auch als Zerlegungssatz von Sierpiński (englisch Sierpiński’s decomposition theorem) bekannt ist.[3]

Es besagt folgendes:[4][5]

Die einfache Kontinuumshypothese
 Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 2^{\aleph_0} = \aleph_1}  
ist logisch äquivalent mit der folgenden Aussage:
Die reelle Koordinatenebene   Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle {\R}^2}   ist darstellbar als Vereinigungsmenge zweier Punktmengen   Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A, B \subseteq {\R}^2 }   mit der Eigenschaft,
dass   Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A}   mit jeder beliebigen Parallelen der Abszissenachse und ebenso   Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle B}   mit jeder beliebigen Parallelen der Ordinatenachse
höchstens abzählbar unendlich viele Schnittpunkte gemeinsam haben.

Ausgehend von diesem Zerlegungssatz hat Erdős gezeigt, dass unter der verschärften Annahme der Gültigkeit der Verallgemeinerten Kontinuumshypothese sein obiger Satz auf Mengen einer Mächtigkeit   Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle >{\mathfrak {c}}}   verallgemeinert werden kann.[6]

Siehe auch

Literatur

Einzelnachweise und Fußnoten

  1. Sierpiński, S. 125.
  2. Der Satz von König benötigt zu seinem Beweis das Auswahlaxiom, weswegen dieses auch hier vorausgesetzt wird.
  3. Komjáth, S. 460.
  4. Sierpiński: Fund. Math. Band 38, S. 6.
  5. Erdős: Michigan Mathematical Journal. Band 2, S. 169.
  6. Theorem 3. In: Michigan Mathematical Journal. Band 2, S. 170.