Diskussion:Harmonische Funktion
Mittelwerteigenschaft
Mir ist die Mittelwerteigenschaft so in Erinnerung:
- Ist f harmonisch, dann sind alle Werte von f innerhalb eines Gebietes G vollständig durch die Werte von f auf dem Rand von G festgelegt. (*)
Im englischen Artikel steht nur, dass der Wert von f im Mittelpunkt einer Kugel durch die Werte auf der Kugeloberfläche festgelegt ist. (Also weniger)
Bemerkenswert ist:
1. Die Gleichung (also f harmonisch) steht in der Physik üblicherweise für Gleichgewichtssituationen.
2. Weil holomorphe Funktionen harmonisch sind, gilt (*) auch für diese - mit n=2- klar das ist die Cauchyformel. Die konkrete Formel für n>=2 sieht übrigens der Cauchyformel sehr ähnlich, ist halt eine Verallgemeinerung.
Müsste man mal in einem Buch über partielle Differentialgleichungen genauer recherchieren.
--Marc van Woerkom 23:28, 23. Aug 2006 (CEST)
bedingung
Die Formel ist nur dann richtig, wenn die Oberfläche der (n-1)-dimensionalen Einheitssphäre ist, vgl. Sphäre_(Mathematik), oder?
--G-hennux 12:06, 3. Nov. 2010 (CET)
sonstiges
Einige Erkenntnisse der harmonischen Funktionen stammen von Theodore Kaczynski http://www.t-h-e-n-e-t.com/html/_film/pers/_pers_kaczynski.htm -- deathmetalrockstar (Diskussion) 18:13, 25. Mai 2012 (CEST)
harmonisches Vektorfeld
Hallo, ich suche einen Ort, wo der Satz „Jedes rotations- und divergenzfreie Vektorfeld ist harmonisch.“ hinpasst. In diesen Artikel passte es vlt in den Abschnitt Verallgemeinerungen, aber auch nicht so richtig. Oder hat jemand eine andere Idee? --Alva2004 (Diskussion) 16:25, 12. Okt. 2020 (CEST)
Hat sich erledigt, siehe Vektoranalysis. --Alva2004 (Diskussion) 17:10, 12. Okt. 2020 (CEST)
- Eigene Artikel zu Harmonisches Vektorfeld und Harmonische Differentialform wären sicher wünscheswert. --Christian1985 (Disk) 17:31, 12. Okt. 2020 (CEST)