Harnacksches Prinzip

aus Wikipedia, der freien Enzyklopädie
Dies ist die aktuelle Version dieser Seite, zuletzt bearbeitet am 3. Februar 2021 um 06:53 Uhr durch imported>MacOrcas(751219) (Leerzeichen nach Bindestrich korrigiert).
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)

Das Harnacksche Prinzip, auch als Satz von Harnack zitiert, ist ein grundlegender Satz aus dem mathematischen Teilgebiet der Funktionentheorie, welcher auf den Mathematiker Axel Harnack (1851–1888) zurückgeht, der diesen Satz in einer Arbeit des Jahres 1886 vorgetragen hat. Das Harnacksche Prinzip behandelt das Konvergenzverhalten monoton wachsender Folgen harmonischer Funktionen. Es beruht auf der ebenfalls von Axel Harnack gefundenen und nach ihm benannten Ungleichung.[1][2][3][4]

Formulierung des Prinzips im klassischen komplexen Fall

Gegeben sei eine offene Menge Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle D \subset \Complex } und dazu eine Folge Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (u_n)_{n\in \N}} harmonischer Funktionen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle {u_n} \colon \, D \to \R } , welche punktweise monoton anwachse:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle u_1(z) \le u_2(z) \le \ldots } Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle ( z \in D ) } .

Sei für

Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle u(z)=\sup _{n\in \mathbb {N} }{u_{n}(z)}=\lim _{n\to \infty }{u_{n}(z)}}

Seien weiter

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle D_0 = \{ z \in D : \, u(z) < \infty \} }

und

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle D_1 = \{ z \in D : \, u(z) = \infty \} }

Dann gilt:

(1) Sowohl Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle D_0 } als auch Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle D_1 } sind zugleich offen und abgeschlossen in Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle D } .
(2) Für den Fall, dass Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle D } ein Gebiet von ist, gilt entweder stets Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle u(z) = \infty } für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle z \in D } oder stets Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle u(z) < \infty } für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle z \in D } .
(3) Ist ein Gebiet von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Complex } und gilt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle u(z_0) < \infty } für ein , so ist die Funktionenfolge lokal gleichmäßig konvergent und die Grenzfunktion Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle u } ist ebenfalls eine harmonische Funktion.

Verallgemeinerung auf höhere Dimensionen

Wie schon Axel Harnack selbst andeutet,[5] gilt das entsprechende Prinzip mit ganz ähnlicher Formulierung auch für den Fall der harmonischen Funktionen auf offenen Mengen des Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle {\R}^n } . Hier beruht der Beweis auf der n-dimensionalen Version der Harnackschen Ungleichung.[6][7]

Literatur

Originalarbeit

  • Axel Harnack: Existenzbeweise zur Theorie des Potentiales in der Ebene und im Raume. In: Berichte über die Verhandlungen der Königlich-Sächsischen Gesellschaft der Wissenschaften. 1886, S. 144–169.
  • Axel Harnack: Existenzbeweise zur Theorie des Potentiales in der Ebene und im Raume. In: Mathematische Annalen. Band 35, 1890, S. 19–40.

Monographien

  • Lars Valerian Ahlfors: Complex Analysis. An Introduction to the Theory of Analytic Functions of One Complex Variable. 3. Auflage. McGraw-Hill, New York [u. a.] 1979, ISBN 0-07-000657-1.
  • Sheldon Axler, Paul Bourdon, Wade Ramey: Harmonic Function Theory. Springer-Verlag, Berlin [u. a.] 1992, ISBN 3-540-97875-5.
  • Eberhard Freitag: Funktionentheorie 2 (= Springer-Lehrbuch). Springer-Verlag, Berlin [u. a.] 2009, ISBN 978-3-540-87899-5.
  • W. K. Hayman, P. B. Kennedy: Subharmonic functions (= L. M. S. Monographs. Band 9). Volume I. Academic Press, London [u. a.] 1976.
  • Rolf Nevanlinna, Veikko Paatero: Einführung in die Funktionentheorie (= Lehrbücher und Monographien aus dem Gebiete der exakten Wissenschaften: Mathematische Reihe. Band 30). Birkhäuser Verlag, Basel / Stuttgart 1965.
  • Walter Rudin: Reelle und komplexe Analysis. 2. verbesserte Auflage. Oldenbourg Wissenschaftsverlag, München 2009, ISBN 978-3-486-59186-6.

Einzelnachweise

  1. Harnack: Ber. Verhandl. Kön. Sächs. Gesell. Wiss. Leipzig. 1886, S. 144 ff.
  2. Freitag: S. 59 ff.
  3. Nevanlinna / Paatero: S. 234 ff.
  4. Rudin: S. 283 ff.
  5. Vgl. Schlussbemerkung in seiner Abhandlung in den Math. Ann., Band 35, S. 40.
  6. Hayman / Kennedy: S. 35 ff.
  7. Axler/ Bourdon / Ramey: S. 47 ff.