Quadratischer Rest

aus Wikipedia, der freien Enzyklopädie
Dies ist die aktuelle Version dieser Seite, zuletzt bearbeitet am 15. April 2021 um 12:13 Uhr durch imported>Sascha Laing(3194268) (→‎Vereinfachte Berechnung der quadratischen Reste: Formeln).
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)

Quadratischer Rest ist ein Begriff aus dem mathematischen Teilgebiet Zahlentheorie. Eine ganze Zahl heißt quadratischer Rest bezüglich eines Moduls , wenn sie zu teilerfremd ist und es eine Zahl gibt, für die die Kongruenz

gilt, das heißt, und liegen in der gleichen Restklasse modulo . Existiert für eine zu teilerfremde Zahl keine Lösung der obigen Kongruenz, dann nennt man quadratischen Nichtrest modulo Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle m} . Zu Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle m} nicht teilerfremde Zahlen werden nicht klassifiziert, sind also weder quadratische Reste noch quadratische Nichtreste.

Beispiel

In diesem Beispiel werden die quadratischen Reste und Nichtreste des Moduls 6 ermittelt. Da die Zahlen 0, 2, 3 und 4 nicht teilerfremd zu 6 sind, werden sie nicht klassifiziert. Zur Klassifikation der Zahlen 1 und 5 ist die folgende Tabelle der Quadrate aller Zahlen von 0 bis 5 hilfreich.

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x} Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x^2} Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x^2 \bmod 6}
0 00 0
1 01 1
2 04 4
3 09 3
4 16 4
5 25 1

Die Zahl 1 findet sich in der rechten Spalte und ist deshalb quadratischer Rest. Die Zahl 5 hingegen ist quadratischer Nichtrest, da sie in der rechten Spalte fehlt.

Vereinfachte Berechnung der quadratischen Reste

Für kleinere Zahlen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle m} können die quadratischen Reste relativ rasch berechnet werden: Es genügt, die Zahlen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 0\leq x\leq m/2} zu betrachten, denn Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x^2} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (x+k\cdot m)^2} haben denselben Rest, ebenso Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x^2} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (-x)^2} , also auch Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x^2} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (m-x)^2} .

Die Berechnung wird hier am Beispiel des Moduls Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle m=11} demonstriert.

 0 mod 11 = 0;  1 mod 11 = 1;   4 mod 11 = 4;   9 mod 11 = 9
16 mod 11 = 5; 25 mod 11 = 3;  36 mod 11 = 3;  49 mod 11 = 5
64 mod 11 = 9; 81 mod 11 = 4; 100 mod 11 = 1; 121 mod 11 = 0

Wenn man so weitermacht, wiederholt sich der Zyklus Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (0, 1, 4, 9, 5, 3, 3, 5, 9, 4, 1)} immer wieder. Wegen der Symmetriebeziehung kann man sich auf die Reduktion der Quadratzahlen beschränken, die nicht größer als Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \lfloor m/2 \rfloor^2=25} sind.

Zur Berechnung der Quadratzahlen kann die Beziehung

verwendet werden. Die nächste Quadratzahl kann also durch Addition von ganz ohne Multiplikation berechnet werden. Damit lassen sich die quadratischen Reste für Modul rasch auch im Kopf berechnen.

Dadurch ergibt sich mit den nachfolgenden Zyklen ein (symmetrisches) Muster:

mod  2: (0, 1) 
mod  3: (0, 1, 1)
mod  4: (0, 1)
mod  5: (0, 1, 4, 4, 1)
mod  6: (0, 1, 4, 3, 4, 1)
mod  7: (0, 1, 4, 2, 2, 4, 1)
mod  8: (0, 1, 4, 1,)
mod  9: (0, 1, 4, 0, 7, 7, 0, 4, 1)
mod 10: (0, 1, 4, 9, 6, 5, 6, 9, 4, 1)
mod 11: (0, 1, 4, 9, 5, 3, 3, 5, 9, 4, 1)
mod 12: (0, 1, 4, 9, 4, 1)
mod 13: (0, 1, 4, 9, 3, 12, 10, 10, 12, 3, 9, 4, 1)
mod 14: (0, 1, 4, 9, 2, 11, 8, 7, 8, 11, 2, 9, 4, 1)
mod 15: (0, 1, 4, 9, 1, 10, 6, 4, 4, 6, 10, 1, 9, 4, 1)
mod 16: (0, 1, 4, 9)
mod 17: (0, 1, 4, 9, 16, 8, 2, 15, 13, 13, 15, 2, 8, 16, 9, 4, 1)
mod 18: (0, 1, 4, 9, 16, 7, 0, 13, 10, 9, 10, 13, 0, 7, 16, 9, 4, 1)
mod 19: (0, 1, 4, 9, 16, 6, 17, 11, 7, 5, 5, 7, 11, 17, 6, 16, 9, 4, 1)
mod 20: (0, 1, 4, 9, 16, 5, 16, 9, 4, 1)
 …

Die Zyklen der durch 4 teilbaren Moduln treten im Muster mehrfach auf.

Multiplikative Eigenschaften

Sind und quadratische Reste modulo , dann ist auch quadratischer Rest. Dies lässt sich einfach zeigen, indem man beide Zahlen multipliziert: Aus

folgt zunächst

mit zwei ganzen Zahlen und . Nun liefert eine Multiplikation

mit der ganzen Zahl , woraus

folgt, sodass mit und auch das Produkt quadratischer Rest ist.

Legendre- und Jacobi-Symbol

Für Rechnungen, bei denen man nachweisen will, ob eine Zahl quadratischer Rest ist, stehen zwei Kurzschreibweisen zur Verfügung. Das Legendre-Symbol gibt an, ob eine Zahl quadratischer Rest für einen Primzahlmodul ist:

Dieses wird zum Jacobi-Symbol verallgemeinert, das die Berechnung für beliebige Moduln auf deren Primfaktorzerlegung zurückführt:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \left(\frac{a}{m}\right) = \left(\frac{a}{p_1}\right)^{\nu_1} \cdot \left(\frac{a}{p_2}\right)^{\nu_2} \cdot \ldots \cdot \left(\frac{a}{p_k}\right)^{\nu_k}}

Da das Jacobi-Symbol für Primzahlmoduln dieselben Werte wie das Legendre-Symbol liefert, ist die Verwendung der gleichen Kurzschreibweise nicht von Nachteil. Als wichtiges Hilfsmittel zur Berechnung des Legendre-Symbols steht das quadratische Reziprozitätsgesetz mit dem ersten und zweiten Ergänzungssatz zur Verfügung. Zu beachten ist aber, dass man am Jacobi-Symbol nicht eindeutig ablesen kann, ob eine Zahl ein quadratischer Rest ist, so ist zum Beispiel Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \left(\frac{2}{15}\right)=1} , aber 2 kein quadratischer Rest modulo 15.

Anwendung in der Kryptologie

Vor allem in der Kryptologie stellt sich vielfach die Aufgabe, für eine vorgegebene Zahl und einen bekannten Modul zu entscheiden, ob diese Zahl für den Modul quadratischer Rest ist. Diese Fragestellung wird als Quadratische-Reste-Problem bezeichnet. Ist der Modul eine Primzahl, so kann dies recht einfach entschieden werden. Andernfalls stellt es sich teilweise recht schwierig dar. Insbesondere besagt die Quadratische-Reste-Annahme, dass es für bestimmte Moduln praktisch nicht möglich ist, diese Frage zu entscheiden.

Quadratische Reste bei Primzahlmoduln

Ist der Modul eine ungerade Primzahl Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle p} , so liefert das Eulersche Kriterium eine wichtige Aussage über quadratische Reste. Ein zu Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle p} teilerfremdes Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a} ist demnach genau dann quadratischer Rest, wenn die folgende Kongruenz gilt:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a^{\frac {p-1}{2}} \equiv 1 \pmod p}

Daraus lässt sich herleiten, dass es für einen ungeraden Primzahlmodul Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle p} genau Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \tfrac{p-1}{2}} quadratische Reste und ebenso viele quadratische Nichtreste gibt.

Der Fall von Primzahlen und das Legendre-Symbol

Im Folgenden sei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle m=p} eine Primzahl. Ist weder Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a} noch Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle b} durch Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle p} teilbar, so gibt die folgende Tabelle in Abhängigkeit von und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle b} an, ob das Produkt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle ab} quadratischer Rest (R) oder Nichtrest (NR) ist:

a R a NR
b R ab R ab NR
b NR ab NR ab R

Dies lässt sich auch so formulieren: Für das Legendre-Symbol gilt stets

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \left(\frac{ab}p\right)=\left(\frac ap\right)\left(\frac bp\right).}

Für ungerade Primzahlen gilt

Aus dieser Beziehung lässt sich auch unmittelbar die folgende Aussage ablesen:

ist quadratischer Rest modulo Primzahlen der Form Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 4k+1} und Nichtrest modulo Primzahlen der Form .

Die Besonderheit der 4

Modulo 4 gibt es nur einen quadratischen Rest, nämlich 1. Denn sowohl für als auch für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n \equiv 3 \pmod 4} ergibt sich Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n^2 \equiv 1 \pmod 4} und für gerade Zahlen gilt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n^2 \equiv 0 \pmod 4} . 3 ist demzufolge quadratischer Nichtrest, was bedeutet, dass keine Quadratzahl modulo 4 den Rest 3 lässt. Die ungeraden Primzahlen (also alle außer 2) lassen sich daher in zwei Gruppen einteilen:

  • Primzahlen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle p} , für die Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle p \equiv 1 \pmod 4} gilt: Für sie existieren Quadratzahlen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n^2} mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n^2 \equiv (p-1) \pmod p} . Für die Primzahlen dieser Gruppe gilt:
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (p-1)^{\frac{p-1}{2}} \equiv 1 \pmod p}
Mit dem Legendre-Symbol kann man dafür auch
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \left(\frac{p-1}{p}\right) = 1}
schreiben oder kürzer:
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \left(\frac{-1}{p}\right) = 1}
  • Primzahlen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle q} , für die Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle q \equiv 3 \pmod 4} gilt: Für sie existieren keine Quadratzahlen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n^2} mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n^2 \equiv (q-1) \pmod q} . Für die Primzahlen dieser Gruppe gilt:
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (q-1)^{\frac{q-1}{2}} \equiv (q-1) \pmod q}
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \left(\frac{q-1}{q}\right) = -1}
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \left(\frac{-1}{q}\right) = -1}

Literatur

  • Peter Bundschuh: Einführung in die Zahlentheorie. 5. Auflage. Springer, 2002, ISBN 3-540-43579-4, S. 124 und 127–147.