Dies ist die
aktuelle Version dieser Seite, zuletzt bearbeitet am 2. Juli 2021 um 14:33 Uhr durch
imported>UdalricusS(3449748).
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Die Maurer-Cartan-Form ist eine in Differentialgeometrie und Mathematischer Physik häufig verwendete Lie-Algebra-wertige Differentialform auf Lie-Gruppen. Sie ist benannt nach dem deutschen Mathematiker und Hochschullehrer Ludwig Maurer und dem französischen Mathematiker Élie Cartan.
Definition
Sei eine Lie-Gruppe, ihre Lie-Algebra. Für induziert die Links-Multiplikation
das Differential
- .
Die Maurer-Cartan-Form ist definiert durch
für .[1]
Maurer-Cartan-Gleichung
Die Maurer-Cartan-Form erfüllt die Gleichung
- .
Hierbei ist der Kommutator Lie-algebra-wertiger Differentialformen durch
und die äußere Ableitung durch
definiert.
Einzelnachweise
- ↑ Jeffrey M. Lee: Manifolds and differential geometry. American Mathematical Society, Providence, R.I. 2009, ISBN 0-8218-4815-1, Chapter: 5.6 The Maurer Cartan Form.