Linearisierter Tangentialkegel
aus Wikipedia, der freien Enzyklopädie
Dies ist die aktuelle Version dieser Seite, zuletzt bearbeitet am 24. Juli 2021 um 10:40 Uhr durch imported>Aka(568) (https, Kleinkram).
Ein linearisierter Tangentialkegel ist ein Begriff aus der nichtlinearen Optimierung. Er stellt eine Vereinfachung eines Tangentialkegels dar und wird meist verwendet, um Optimalitätskriterien oder Regularitätsbedingungen wie die Abadie CQ herzuleiten. Der linearisierte Tangentialkegel ist stets eine Obermenge des Tangentialkegels.
Definition
Gegeben sei eine nichtleere Menge , welche durch die Ungleichungen und die Gleichungen beschrieben wird. Dann heißt für einen Punkt die Menge
der linearisierte Tangentialkegel im Punkt .
Beispiel
Betrachtet man als Beispiel die implizite Funktion den Einheitskreis, so ist
Am Punkt ist also der linearisierte Tangentialkegel
- .
Hätte man die Funktion als Ungleichung und nicht als Gleichung definiert, so wäre
- .
Literatur
- C. Geiger, C. Kanzow: Theorie und Numerik restringierter Optimierungsaufgaben. Springer, 2002. ISBN 3-540-42790-2. https://books.google.de/books?id=spmzFyso_b8C&hl=de