Mischoxid

aus Wikipedia, der freien Enzyklopädie
Dies ist die aktuelle Version dieser Seite, zuletzt bearbeitet am 4. August 2021 um 11:59 Uhr durch imported>Axdot(3722616) (Link Nickel(II)-oxid).
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)

Ein Mischoxid (kurz MOX) oder Komplexoxid ist ein Stoff, der sich aus mehreren Oxiden zusammensetzt, dessen Kristallgitter also aus Sauerstoffionen und den Kationen mehrerer Elemente besteht.[1] Auch wenn häufig „MOX“ mit dem Uran-Plutonium-Gemisch als Kernbrennstoff gleichgesetzt wird (siehe auch Brennelementefabrik), gibt es noch viele weitere Mischoxide.

Anwendungen

Elektronik

Indiumzinnoxid (ITO) ist ein in der Elektronik wichtiges Mischoxid. Der Stoff wird für die Herstellung transparenter Elektroden in Flüssigkristallbildschirmen, organischen Leuchtdioden und Touchscreens eingesetzt.[2] Weiterhin findet es Verwendung in Dünnschicht-Solarzellen wie auch in der Verdrahtung von Halbleitersensoren. Da ITO Infrarotstrahlung stark reflektiert, wird es vereinzelt als Wärmeschutz auf Fensterglasscheiben aufgebracht. Ebenso können verschiedenste Oberflächen, beispielsweise Kunststofffolien, mit ITO beschichtet werden, damit sie sich nicht elektrostatisch aufladen.

Farbpigment

Nickeltitangelb ist ein gelbes Pigment aus einem Gemisch von Nickel(II)-oxid, Titandioxid und Antimon(V)-oxid.[3]

Batterien

Lithium-Nickel-Mangan-Cobalt-Oxide sind Mischoxide mit der allgemeinen Formel LiNixMnyCozO2.[4] Die wichtigsten Vertreter sind dem Lithiumcobaltoxid LiCoO2 eng verwandt und haben wie dieses eine Schichtstruktur. Sie werden die in Lithiumionenbatterien an der Pluspolseite (beim Entladen: Kathode) als Speichermaterial für Lithiumionen verwendet.

Kerntechnik

In der Kerntechnik werden zum Teil MOX-Brennelemente verwendet, die aus Urandioxid UO2 und Plutoniumdioxid PuO2 bestehen.[5] Sie werden heute in verschiedenen Ländern (nachweislich: Frankreich, Deutschland, Schweiz, Belgien, Japan) in Kernreaktoren eingesetzt, um das bei der Wiederaufarbeitung abgetrennte Plutonium zu verwerten und dabei gleichzeitig für Kernwaffen weitgehend unbrauchbar zu machen.

Einzelnachweise

  1. Hermann Salmang, Horst Scholze: Keramik. Springer Science & Business Media, 2006, ISBN 978-3-540-63273-3, S. 784 (books.google.de).
  2. Josef K. Felixberger: Chemie für Einsteiger. Springer-Verlag, 2017, ISBN 978-3-662-52821-1, S. 277 (books.google.de).
  3. Ingo Klöckl: Chemie der Farbmittel: In der Malerei. Walter de Gruyter & Co KG, 2015, ISBN 978-3-11-037453-7, S. 183 (books.google.de).
  4. Neue Technologien in Lithium-Ionen-Batterien. In: Chemie Ingenieur Technik. Band 78, Nr. 9, 2006, ISSN 1522-2640, S. 1328–1328, doi:10.1002/cite.200650227 (wiley.com).
  5. Martin Bertau, Armin Müller, Peter Fröhlich, Michael Katzberg: Industrielle Anorganische Chemie. John Wiley & Sons, 2013, ISBN 978-3-527-33019-5, S. 746 (books.google.de).