Vandermonde-Matrix

aus Wikipedia, der freien Enzyklopädie
Dies ist die aktuelle Version dieser Seite, zuletzt bearbeitet am 8. September 2021 um 20:01 Uhr durch imported>Anonym~dewiki(31560) (→‎Weitere Eigenschaften).
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)

Unter einer Vandermonde-Matrix (nach A.-T. Vandermonde) versteht man in der Mathematik eine Matrix, die eine im Folgenden beschriebene spezielle Form hat.

Für ein Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n} -Tupel reeller Zahlen oder allgemeiner von Elementen in einem Körper ist die Vandermonde-Matrix definiert durch:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle V (x_1, x_2, \ldots , x_n) = \begin{pmatrix} 1 & x_1 & x_1^2 & \cdots & x_1^{n-1} \\ 1 & x_2 & x_2^2 & \cdots & x_2^{n-1} \\ 1 & x_3 & x_3^2 & \cdots & x_3^{n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_n & x_n^2 & \cdots & x_n^{n-1} \end{pmatrix} }

Die Determinante wird auch Vandermonde-Determinante genannt, sie hat den Wert

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \det V(x_1,x_2, \ldots, x_n) = \prod_{1 \leq i < j \leq n} (x_j - x_i) } .[1]

Insbesondere ist die Vandermonde-Matrix genau dann regulär, wenn die paarweise verschieden sind.

Anwendung: Polynominterpolation

Die Vandermonde-Matrix spielt bei der Interpolation von Funktionen eine wichtige Rolle: Wenn an den Stützstellen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (x_1, x_2, \ldots , x_n) } die Funktionswerte Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (f_1, f_2, \ldots, f_n) } durch ein Polynom Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle p} vom Grad Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n - 1 } (oder kleiner) interpoliert werden sollen, dann führt der Ansatz

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle p(x) = a_0 + a_1x^1 + a_2x^2 + \cdots + a_{n-1} x^{n-1}}

auf das lineare Gleichungssystem

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \begin{pmatrix} 1 & x_1 & x_1^2 & \cdots & x_1^{n-1} \\ 1 & x_2 & x_2^2 & \cdots & x_2^{n-1} \\ 1 & x_3 & x_3^2 & \cdots & x_3^{n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_n & x_n^2 & \cdots & x_n^{n-1} \end{pmatrix} \cdot \begin{pmatrix} a_0 \\ \vdots \\ a_k \\ \vdots \\ a_{n-1} \end{pmatrix} = \begin{pmatrix} f_1 \\ \vdots \\ f_i \\ \vdots \\ f_n \end{pmatrix} }

mit einer Vandermonde-Matrix als Koeffizientenmatrix. Aus der oben genannten Eigenschaft der Vandermonde-Determinante folgt daher insbesondere, dass das Interpolationsproblem genau dann eindeutig lösbar ist, wenn alle Stützstellen paarweise verschieden sind.

In der Standardbasis der Polynome ist die Matrix allerdings sehr schlecht konditioniert und die Auflösung mit Standardmethoden mit einer Laufzeit in Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle O(n^3)} recht teuer, weswegen man andere Darstellungen für die Polynome wählt. Näheres bei Polynominterpolation und unten.

Weitere Eigenschaften

Für paarweise verschiedene Stützstellen diagonalisiert die Vandermonde-Matrix Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle V} aus dem obigen Gleichungssystem die Begleitmatrix Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle C} des Polynoms

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle p(x)=\prod_{i=1}^n(x-x_i)=b_0+b_1x+\ldots+b_{n-1}x^{n-1}+x^n} ,

es gilt:

.

Für große Anzahlen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n} kann man das Gleichungssystem oben auch über den folgenden Zusammenhang lösen, durch den die Inverse der Vandermonde-Matrix eng mit ihrer Transponierten verbunden ist. Mit den eingeführten Polynomkoeffizienten bildet man die Hankel-Matrix

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle H:=\begin{pmatrix} b_1 & b_2 & \cdots & b_{n-1} & 1 \\ b_2 & b_3 & \cdots & 1 & 0 \\ \vdots & & .\cdot \\ b_{n-1} & 1 & & 0 \\ 1 & 0 & & & 0 \end{pmatrix}}

und die Diagonalmatrix Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle D:= \operatorname{diag}(p'(x_i))} . Wenn alle Stützstellen paarweise verschieden sind, ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle D} regulär. Damit gilt

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle VHV^T=D,\quad V^{-1}=HV^TD^{-1}.}

Literatur

Einzelnachweise

  1. Christoph Ableitinger, Angela Herrmann: Lernen aus Musterlösungen zur Analysis und Linearen Algebra. Ein Arbeits- und Übungsbuch. 1. Auflage. Vieweg + Teubner, Wiesbaden 2011, ISBN 978-3-8348-1724-2, S. 113–116.

Weblinks

Weisstein, Eric W.: Vandermonde Matrix. In: MathWorld (englisch).