Polykontexturalitätstheorie

aus Wikipedia, der freien Enzyklopädie
Dies ist die aktuelle Version dieser Seite, zuletzt bearbeitet am 8. November 2021 um 18:36 Uhr durch imported>Aka(568) (→‎Literatur: Dateigröße angepasst).
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)

Die Polykontexturalitätstheorie erweitert die klassische mathematische Logik, so dass Kontextabhängigkeit/Subjektivität und Paradoxien formal beschrieben werden können.

Einführung

Die Polykontexturalitätstheorie oder die Theorie der Polykontexturalität wurde von dem Philosophen und Logiker Gotthard Günther in den 1970er-Jahren in die Wissenschaft eingeführt. Diese Theorie ist eine unmittelbare Weiterentwicklung der Günther'schen Stellenwertlogik, die aus seinen Versuchen hervorgegangen ist, ein mehrwertiges ontologisches Ortswertlogik-System zu entwickeln. Die Theorie der Polykontexturalität umfasst sowohl die polykontexturale Logik, die Morpho- und die Kenogrammatik als auch die von Günther zuerst entwickelte semi-klassische Stellenwertlogik, die er 1974 als "ontologisches Ortswert-System" bezeichnet[1], um den von ihm 1958 erstmals eingeführten Begriff der Stellenwertlogik[2] von der Verwendung in nicht-logischen Zusammenhängen (wie beispielsweise bei den Soziologen der Frankfurter Schule) deutlich abzugrenzen. Eine ausführliche Darstellung der historischen Entwicklung der Günther'schen Arbeiten sowie deren inhaltliche und begriffliche Ausdifferenzierung findet sich im Aufsatz Einübung in eine andere Lektüre von Rudolf Kaehr und Joseph Ditterich[3].

„Mehrwertigkeit“ bei Günther und Łukasiewicz

Wenn man den Aussagenkalkül mit Hilfe der beiden Werte 1 und 0 beschreibt, die wie üblich mit den Begriffen "wahr (T)" – "falsch (F)" oder "designiert" – "nicht-designiert" für 1 resp. 0 interpretiert werden können, dann liegen die von Łukasiewicz zusätzlich eingeführten Werte zwischen 0 und 1, also innerhalb der betrachteten logischen Domäne und man spricht von einer mehrwertigen Logik. Das ist in Abb. 1b skizziert, Abb. 1a stellt den einfachen Fall einer logischen Domäne mit nur 2 Werten (null und eins) dar. Man gelangt von diesen Ansätzen zu den probabilistischen Logik-Konzeptionen sowie zu der sehr populär gewordenen Fuzzy-Logik. Prinzipiell lassen sich beliebig viele Werte zwischen 0 und 1 einführen.

Abb. 1a Abb. 1b
1-------------0 1-----1/2-----0

Im Gegensatz dazu geht Günthers Polykontexturalitätstheorie zwar von zweiwertiger Logik aus (was aber auch erweiterbar wäre auf mehrwertige Logiken), verknüpft jedoch mehrere solcher – räumlich verteilter – Logiksysteme an bestimmten Stellen. Dadurch wird es bei Günther möglich, Kontextabhängigkeit/Subjektivität formal zu beschreiben. Auch Paradoxien (z. B. Darstellung von Selbstreferenz) lassen sich hiermit formal beschreiben, da man nicht mehr an einen einzigen Kontext gebunden ist; Selbstreferenz/Paradoxien müssen daher nicht in logischen Zirkeln enden (serialisiert / verzeitlicht werden), sondern werden sozusagen "von oben herab" / "auf einen Blick" / "bildhaft" / "parallel" statt nur serialisiert darstellbar.

Siehe auch

Literatur

Quellenangaben

  1. Gotthard Günther: Das Janusgesicht der Dialektik, in: Hegel Jahrbuch (hrsg. W. R. Beyer), Pahl-Rugenstein Verlag, Köln 1979, p. 98–117
  2. Gotthard Günther: Die Aristotelische Logik des Seins und die nicht-Aristotelische Logik der Reflexion, Zeitschrift für philosophische Forschung, 12, 1958, p. 360–407 In 1, Das Janusgesicht der Dialektikschreibt Günther auf Seite 97: Der Verf. hat 1958 mit einem Aufsatz in der Ztschr. f. philos. Forschung den Terminus "Stellenwert" in die Theorie der formalen (mehrwertigen) Logik eingeführt. Seitdem ist dieser Terminus so häufig in nicht logischen Zusammenhängen (bes. von der Frankfurter Schule) angewendet worden, dass er hier nicht mehr benutzt wird. Der Verf. sagt von jetzt ab "Ortswert", um Missverständnisse zu vermeiden.
  3. Rudolf Kaehr & Joseph Ditterich: Einübung in eine andere Lektüre: Diagramm einer Rekonstruktion der Güntherschen Theorie der Negativsprachen, Philosophisches Jahrbuch, 86. Jhg., 1979, S. 385–408, http://www.vordenker.de/ggphilosophy/kaehr_einuebung.pdf