Geodätische Krümmung

aus Wikipedia, der freien Enzyklopädie
Dies ist die aktuelle Version dieser Seite, zuletzt bearbeitet am 28. Dezember 2021 um 21:04 Uhr durch imported>BurghardRichter(350389) (→‎Zusammenhang zur Normalkrümmung: Interpunktion).
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)

Die geodätische Krümmung ist ein Begriff aus der klassischen Differentialgeometrie und bezeichnet bei einer Kurve auf einer Fläche denjenigen Anteil der Krümmung dieser Kurve, der in der Fläche gemessen werden kann. Anschaulich ist sie die Krümmung der in die Tangentialebene projizierten Kurve.

Die geodätische Krümmung ist eine von der Fläche abhängige Eigenschaft der Kurve. Sie gehört zur inneren Geometrie der Fläche, d. h., sie kann auch ohne Kenntnis der Krümmung der Fläche im Raum bestimmt werden. Kurven mit der geodätischen Krümmung 0 werden als Geodäten bezeichnet. Sie bilden lokal den kürzesten Abstand zwischen zwei Punkten in der Fläche.

Definition

Im dreidimensionalen Raum () seien eine Fläche mit dem Normaleneinheitsvektor und eine nach der Bogenlänge parametrisierte differenzierbare Kurve auf . Dann heißt

die geodätische Krümmung von bezüglich .

Zusammenhang zur Normalkrümmung

Der (Raum-)Krümmungsvektor kann nach den Ableitungsgleichungen von Burali-Forti in zwei Anteile aufgeteilt werden: einen Anteil, der tangential zur Fläche ist, und einen Anteil, der orthogonal zur Fläche ist:

wobei der Tangentenvektor der Kurve ist. Die Krümmung wird als Normalkrümmung bezüglich der Fläche bezeichnet. Sie ist die Krümmung jener Kurve im betrachteten Punkt , die durch Schnitt von mit einer zur Tangentialebene in orthogonalen Ebene entsteht. Die Normalkrümmung ist daher abhängig von der Richtung der Kurve in , welche durch die Ausrichtung der Schnittebene (Rotation um den Normalvektor der Fläche in ) bestimmt ist. Die Extremwerte der Normalkrümmung werden als Hauptkrümmungen, die dazugehörigen Kurvenrichtungen als Hauptkrümmungsrichtungen bezeichnet.

Für die Raumkrümmung einer Kurve gilt:

Bezeichnet den Winkel zwischen dem Normalenvektor der Fläche und dem Hauptnormalenvektor der Kurve, so gilt:

Beispiel

Auf der Kugelfläche mit der Parameterdarstellung

beträgt die geodätische Krümmung der Längenkreise () . Für die Breitenkreise () gilt: .

Eigenschaften

  • Die geodätische Krümmung ist eine Größe der inneren Geometrie von Flächen, d. h., sie hängt neben dem Verlauf der Kurve lediglich von der ersten Fundamentalform der Fläche und deren Ableitungen ab. Sie kann also allein durch Längen- und Winkelmessungen innerhalb der Fläche bestimmt werden, ohne dass die räumliche Form dieser Fläche bekannt sein muss.
  • Durch die Vorgabe der geodätischen Krümmung sowie eines Anfangspunktes und einer Anfangsrichtung wird eine Flächenkurve eindeutig festgelegt.
  • Besondere Bedeutung haben Flächenkurven mit der geodätischen Krümmung 0. Sie werden als Geodäten bezeichnet und bilden den (lokal) kürzesten Abstand zwischen zwei Punkten auf der Fläche.
  • Die geodätische Krümmung ist vorzeichenbehaftet. Kehrt man die Orientierung von oder den Durchlaufsinn von um, wechselt das Vorzeichen.

Literatur

  • Manfredo Perdigão do Carmo: Differential Geometry of Curves and Surfaces. Reprinted edition. Prentice-Hall, Upper Saddle River NJ 1976, ISBN 0-13-212589-7.
  • Wolfgang Kühnel: Differentialgeometrie. Kurven – Flächen – Mannigfaltigkeiten. Vieweg-Verlag, Braunschweig u. a. 1999, ISBN 3-528-07289-X.