Hardy-Littlewood-Vermutung

aus Wikipedia, der freien Enzyklopädie
Dies ist die aktuelle Version dieser Seite, zuletzt bearbeitet am 3. Februar 2022 um 06:56 Uhr durch imported>FerdiBf(497820) (→‎Zweite Hardy-Littlewood-Vermutung: Satz über zusammengehörige Primzahlzwillinge entfernt, siehe Diskussion.).
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)

Die beiden Hardy-Littlewood-Vermutungen sind unbewiesene mathematische Vermutungen aus dem Bereich der Zahlentheorie. Sie wurden von den beiden englischen Mathematikern Godfrey Harold Hardy und John Edensor Littlewood aufgestellt und im Jahre 1923 im Werk "Some Problems of 'Partitio Numerorum.' III. On the Expression of a Number as a Sum of Primes." veröffentlicht.[1]

Im Jahre 1974 gelang es Ian Richards aufzuzeigen, dass die beiden Hardy-Littlewood-Vermutungen inkompatibel zueinander sind. Das bedeutet, sie können nicht beide korrekt sein, sondern höchstens eine.[2]

Erste Hardy-Littlewood-Vermutung

Die erste Hardy-Littlewood-Vermutung wird auch k-Tupel-Vermutung oder starke Primzahlzwillingsvermutung genannt. Letzteres hat den Grund, dass durch das Beweisen der ersten Hardy-Littlewood-Vermutung unter anderem auch die Primzahlzwillingsvermutung – nach der unendlich viele Primzahlzwillinge existieren – bewiesen wird. Sie besagt, es existieren unendlich viele Primzahltupel zu allen korrekten (und nicht notwendigerweise dichtesten) Konfigurationen und gibt eine explizite Funktion für die Dichte dieser an.[3][4] Mit einer Konfiguration eines Primzahltupels werden die Differenzen zwischen den Tupelelementen beschrieben. So ist beispielsweise eine mögliche korrekte Konfiguration eines primen 2-Tupels (auch bekannt als Primzahlzwilling). Damit eine Konfiguration als korrekt gilt, dürfen nicht alle möglichen Reste bezüglich jeder Primzahl im Tupel vorkommen (→ Primzahltupel). Die dichtesten Konfigurationen werden auch Konstellationen genannt.

Sei im Weiteren die Funktion, die zu einer beliebigen Zahl die Menge aller Primzahlen kleinergleich dieser Zahl angibt. Formal:

Wobei die eckigen Klammern für ein abgeschlossenes Intervall stehen und wobei für die Menge aller Primzahlen steht. Sei die Primzahlfunktion, sie gibt also die Anzahl der Primzahlen an, die kleiner oder gleich sind wie ihr Funktionsargument. Diese lässt sich dank der Definition der Funktion einfach formalisieren:

Nun kann für beliebige korrekte Konfigurationen der Größe eine Konstante eingeführt werden, die durch das folgende konvergente unendliche Produkt definiert ist:

Wobei die Anzahl unterschiedlicher Reste von bezüglich des Teilers bezeichnet. Formal:

Die Zahl wird auch Primzahlzwillingskonstante bezeichnet. (Folge A005597 in OEIS)

Für Primzahlpaare () mit beliebiger Differenz existiert für die Konstante die folgende Formel:

Wobei für die Teilbarkeitsrelation steht.

Für hat sich der oben erwähnte Wert von etwa 0,66016 etabliert. Es ist hierbei zu unterscheiden, dass Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle C_m} mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle m=2} und folglich Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle k=1} doppelt so groß ist wie Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle C_2} , weswegen es für die Vermutung zum asymptotischen Verhalten auch zwei unterschiedliche Formeln gibt.

Interessanterweise ist die Konstante Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle C} für unterschiedliche Konfigurationenen gleicher Größe nicht notwendigerweise gleich. Das kleinste Gegenbeispiel ist eine Konstellation der Größe 8.[5]

Es lässt sich nun auch die Primzahlfunktion Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \pi} um den Index Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (m_1, \dots, m_k)} erweitern, sodass Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \pi_{m_1, \dots, m_k}} die Anzahl aller Primzahltupel bezeichnet, die von der Form Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (p, p+2m_1, \dots , p+2m_k)} sind und deren Komponenten nicht größer als das Funktionsargument sind. Als Beispiel sei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \pi_2(9) = 2} genannt, denn bis 9 gibt es die Primzahlzwillinge Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (3,5)} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (5, 7)} .

Mit der ersten Hardy-Littlewood-Vermutung wird nun behauptet, es gälte das asymptotische Verhalten

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \pi_2(n) \sim 2 C_2 \int_2^n \frac{\mathrm{d}t}{(\ln t)^2} }

was sich auch wie folgt als Grenzwert formalisieren lässt:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \lim_{ n \rightarrow \infty} \frac{\pi_2(n)}{2 C_2 \int_2^n {dt \over (\ln t)^2}} = 1}

Auf beliebige Konfigurationen verallgemeinert lautet die Vermutung

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \pi_{m_1, \dots, m_k}(n) \sim C_{m_1, \dots, m_k} \int_2^n \frac{\mathrm{d}t}{\mathrm{d}\ln^{k+1}t}}

was sich auf analoge Weise zu einem Grenzwert umformen lässt.

Da die Anzahl der Primzahlen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \pi} laut dem Primzahlsatz asymptotisch äquivalent zu Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \frac{x}{\ln x}} ist – es gilt also Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \pi(x) \sim \frac{x}{\ln x}} –, so scheint die Vermutung durchaus plausibel, und auch numerisch lässt sich die asymptotische Form gut bestätigen, was jedoch nicht hinreichend für einen Beweis ist.

Zweite Hardy-Littlewood-Vermutung

Die zweite Hardy-Littlewood-Vermutung trifft die Aussage über die Anzahl der Primzahlen in einem Intervall. Genauer geht es um die folgende Ungleichung:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \forall x,y \in \left \{ n \in \mathbb{N} \mid n \geq 2 \right \}: \pi(x + y) \leq \pi(x) + \pi(y)}

Wobei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \pi} erneut die Primzahlfunktion ist, also die Anzahl der Primzahlen angibt.

Im Allgemeinen wird davon ausgegangen, dass diese Vermutung falsch ist, da sie – wie anfangs erwähnt – nicht kompatibel zur plausibleren ersten Hardy-Littlewood-Vermutung ist.[1]

Der Fall für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x=y} ist trivial. Die Primzahlfunktion wächst langsamer als linear, formal lässt sich also sagen, dass Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \pi \in \hbox{o}(\operatorname{id}_{\mathbb{R}})} gilt, wobei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \operatorname{id}_{\mathbb{R}}} die identische Abbildung ist. Siehe Landau-Symbole für die o-Notation. Folglich muss also die Ungleichung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \pi (2 \cdot x) \le 2 \cdot \pi (x)} für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x \ge 2} gelten.

Als Beispielwerte für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x,y \in \left \{ n \in \mathbb{N} \mid n \geq 2 \right \}} , für welche die Gleichung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \pi(x + y) = \pi(x) + \pi(y)} gilt, seien konkret Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (2, 3)} genannt. Allgemein erfüllen alle Paare Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (x, y) = (2, p)} bzw. Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (p, 2)} die Gleichung, bei welchen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle p} das kleinere Element eines Primzahlzwillingspaares ist.

Analog dazu gilt die Ungleichung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \pi(x + y) < \pi(x) + \pi(y)} für alle Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (2, p)} bzw. Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (p, 2)} , bei denen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle p} nicht das kleinere Element eines Primzahlzwillingspaares ist. Ein Beispiel ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle p=7} , denn Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (7, 9)} ist kein Primzahlzwillingspaar, da 9 nicht prim ist.

Weblinks

Einzelnachweise