Superkapazität

aus Wikipedia, der freien Enzyklopädie
Dies ist die aktuelle Version dieser Seite, zuletzt bearbeitet am 17. Februar 2022 um 20:30 Uhr durch imported>Koyaanisqatsi01(403636) (tf).
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Schaltung zur Realisierung einer Superkapazität D. Rechts das Schaltsymbol

Eine Superkapazität ist eine elementare elektronische Schaltung, welche eine Form von Impedanzkonverter darstellt. Die Anwendung liegt im Bereich von analogen Tiefpassfiltern. Die Schaltung wurde 1969 von L.T. Bruton im Rahmen der Bruton-Transformation (FDNR-Technik) vorgestellt.[1] Bei dieser Transformation werden frequenzunabhängige ohmsche Widerstände zu linear frequenzabhängigen Kondensatoren und Kondensatoren zu Superkapazitäten, deren rein reelle Impedanz quadratisch von der Frequenz abhängt.

Die Schaltung besteht aus zwei Operationsverstärkern, zwei Kondensatoren und drei ohmschen Widerständen die den konkreten Wert der Superkapazität bestimmen. Zur vereinfachten Darstellung wird in Schaltplänen meist ein spezielles Symbol mit der Bezeichnung D verwendet, wie in nebenstehender Abbildung dargestellt.

Der Wert der reellen Impedanz an den Anschlüssen 1 und 2 einer Superkapazität ist:

mit den Wert und Dimension für D, welcher durch die passiven Bauelemente der Schaltung festgelegt wird zu:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle D = R_1 \cdot C_1 \cdot C_2}
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \left[ D \right] = \frac{As^2}{V} }

Die beiden Widerstände mit der Bezeichnung R besitzen keinen Einfluss auf den Wert von D, sie müssen allerdings gleiche Werte aufweisen. In praktischen Filterschaltung werden meist alle drei Widerstände mit gleichem Wert gewählt.

Literatur

  • Lutz v. Wangenheim: Aktive Filter und Oszillatoren. 1. Auflage. Springer, 2008, ISBN 978-3-540-71737-9.

Weblinks

Einzelnachweise

  1. L.T Bruton: Network Transfer Functions Using the Concept of Frequency Dependent Negative Resistors, IEEE, Circuit Theory, 1969, Ausgabe CT-16, Seiten 406 bis 408