Wavelet-Kompression

aus Wikipedia, der freien Enzyklopädie
Dies ist die aktuelle Version dieser Seite, zuletzt bearbeitet am 31. März 2022 um 18:04 Uhr durch imported>APPERbot(556709) (Bot: Vorlage Internetquelle: Parameter Sprache korrigiert).
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)

Die Wavelet-Kompression ist eine Form der Datenkompression speziell für Bildkompression (teilweise auch Videokompression).

Die Idee jeder Datenkompression ist das Auffinden der redundanten Anteile in vorliegenden Daten, beispielsweise:

  • Zeitliche Redundanz – z. B. unterscheidet sich der Hintergrund bei zwei zeitlich aufeinanderfolgenden Videobildern in der Regel nur minimal
  • Räumliche Redundanz – räumlich eng beieinanderliegende Punkte weisen oft ähnliche Färbungen auf
  • Spektrale Redundanz – Frequenzkomponenten können oft mit Hilfe von benachbarten Komponenten ,,vorhergesagt`` werden

Wavelet-basierte Verfahren ermöglichen Kompressionsraten, die in der Größenordnung von 1:65 liegen und damit deutlich besser sind als frühere Verfahren. Die Theorie der Wavelets wurde Ende der 80er Jahre von Yves Meyer entwickelt und von Ingrid Daubechies und Stéphane Mallat weiterentwickelt, wobei sich die Verbindungen zur Signalverarbeitung ergaben.

Funktionsweise

Bei den gängigen auf Wavelets basierenden Kompressionsverfahren für Bilddaten können im Wesentlichen drei Phasen unterschieden werden:

Die Rekonstruktion des Bildsignals gliedert sich dann entsprechend in Decodierung, Dequantisierung und inverse Transformation.

Waveletkompression in der Praxis

Verglichen mit verlustfreien Verfahren sind die erreichbaren Kompressionsraten ungleich höher, eine Reduktion der Ausgangsdaten um Faktor 65 ist durchaus im Bereich des Machbaren.

Während das JPEG-Verfahren bei höheren Kompressionsraten (Faktor 50 und mehr) zu ,,Blockbildung`` neigt, treten derartige Beeinträchtigungen bei Wavelet-basierten Verfahren erst bei deutlich höheren Kompressionsraten auf.

Die für Kompression und Dekompression benötigte Zeit kann bei geeigneten Codierverfahren in vernünftigen Grenzen gehalten werden. Bei sehr hohen Kompressionsraten (Reduktion um mehr als Faktor 100) können jedoch auf Fraktalen basierende Algorithmen bessere Ergebnisse als Wavelet-basierte Verfahren erzielen.

Beispiele für Wavelet-Kompression

Videokompression

Bildkompression

Weblinks