Konstanter Funktor

aus Wikipedia, der freien Enzyklopädie
Dies ist die aktuelle Version dieser Seite, zuletzt bearbeitet am 4. April 2022 um 05:45 Uhr durch imported>FerdiBf(497820) (→‎Der Funktor der konstanten Funktoren: umgestellt).
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)

Der konstante Funktor ist ein Begriff aus dem mathematischen Teilgebiet der Kategorientheorie. Ein konstanter Funktor zwischen zwei Kategorien ist ein Funktor, der jedes Objekt auf ein festes Objekt der Zielkategorie und jeden Morphismus auf die Identität dieses festen Objekts abbildet.

Definition

Seien und zwei Kategorien, sei ein Objekt in . Die Zuordnungen

  • Objekt aus
  • Morphismus aus

bilden einen Funktor . Man nennt diesen den konstanten Funktor mit Wert und bezeichnet ihn oft auch mit .[1][2][3]

Bemerkungen

Der Funktor der konstanten Funktoren

Seien und zwei Kategorien, und Objekte aus , die auch die durch sie gegebenen konstanten Funktoren bezeichnen. Ist und definiert durch für alle Objekte , so ist eine natürliche Transformation zwischen den konstanten Funktoren. Auf diese Weise erhält man einen Funktor von in die Funktorkategorie Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathcal{D}^{\mathcal{C}}} , der jedes Objekt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle D} auf den zugehörigen konstanten Funktor abbildet.[4] Der Funktor Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle K_{\mathcal{C},\mathcal{D}}} erhält sowohl Limites als auch Kolimites.[5]

Ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathcal{C}} eine kleine Kategorie und existieren in Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathcal{D}} alle Limites mit Indexkategorie Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathcal{C}} , so hat man eine Adjunktion Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle K_{\mathcal{C},\mathcal{D}} \dashv \lim_{\leftarrow \mathcal{C}}} . Dabei bezeichnet Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \lim_{\leftarrow \mathcal{C}}} einen durch Wahlen von Limes-Objekten gebildeten Funktor Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathcal{D}^{\mathcal{C}}\rightarrow \mathcal{D}} .

Ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathcal{C}} eine kleine Kategorie und existieren in Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathcal{D}} alle Kolimites mit Indexkategorie Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathcal{C}} , so hat man eine Adjunktion Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \lim_{\rightarrow \mathcal{C}} \dashv K_{\mathcal{C},\mathcal{D}}} . Dabei bezeichnet Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \lim_{\mathcal{C}\rightarrow }} einen durch Wahlen von Kolimes-Objekten gebildeten Funktor Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathcal{D}^{\mathcal{C}}\rightarrow \mathcal{D}} .[6]

Trifft beides zu, erhält man die leicht einprägsame Formel (die Pfeile unter dem Limeszeichen in nachstehender Formel zeigen zur Mitte):

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \lim_{\mathcal{C}\rightarrow } \dashv K_{\mathcal{C},\mathcal{D}} \dashv \lim_{\leftarrow \mathcal{C}}} .

Einzelnachweise

  1. Emily Riehl: Category Theory in Context. AMS Dover Publications, 2016, ISBN 0-486-80903-X, Definition 3.1.1, S. 74.
  2. Martin Brandenburg: Einführung in die Kategorientheorie. Springer, 2016, ISBN 978-3-662-53520-2, Beispiel 3.2.21 2..
  3. Horst Herrlich, George E. Strecker: Category Theory. Allyn and Bacon Inc., 1972, ISBN 978-3-540-05634-8, Beispiel 9.2 (4).
  4. Horst Herrlich, George E. Strecker: Category Theory. Allyn and Bacon Inc., 1972, ISBN 978-3-540-05634-8, 15.8, S. 97.
  5. Horst Herrlich, George E. Strecker: Category Theory. Allyn and Bacon Inc., 1972, ISBN 978-3-540-05634-8, Beispiel 24.4 (9), S. 168.
  6. Horst Herrlich, George E. Strecker: Category Theory. Allyn and Bacon Inc., 1972, ISBN 978-3-540-05634-8, 25.7, S. 199.