Cournotscher Punkt

aus Wikipedia, der freien Enzyklopädie
Dies ist die aktuelle Version dieser Seite, zuletzt bearbeitet am 20. Juli 2022 um 12:55 Uhr durch imported>131Platypi(3264934) (Das ist so nicht richtig, wie auch schon auf der Diskseite angemerkt wurde: zur Bestimmung des Gewinns benötigen wir auch die Kosten, die hier bislang noch nicht eingeflossen sind.).
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)

Der cournotsche Punkt ist eine besonders im deutschsprachigen Raum bekannte Bezeichnung für denjenigen Punkt auf der Preis-Absatz-Funktion eines Monopolunternehmens, an dem sich das Unternehmen im Gewinnmaximum befindet. Im Mengen-Preis-Diagramm erfasst der Punkt also die zwei Koordinaten Menge und Preis. Der cournotsche Punkt ist damit salopp gesprochen die Antwort auf die Frage, welche Preis-Mengen-Kombination für einen Monopolisten gewinnmaximal ist.[1] Er ist das Ergebnis monopolistischer Preisbildung.

Benannt ist dieser Punkt nach dem französischen Wirtschaftswissenschaftler Antoine-Augustin Cournot (1801–1877).[2]

Typisch für den cournotschen Punkt ist, dass dieser links vom Erlösmaximum liegt. Mit anderen Worten: im Gewinnmaximum wird eine geringere Menge des Gutes abgesetzt, als dies im Erlösmaximum der Fall wäre.

Berechnung

cournotscher Punkt graphisch

Berechnung des cournotschen Punkts (Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle C} ) mit gewinnmaximalem Preis (Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle p_\mathrm{c}} ) und gewinnmaximaler Absatzmenge (Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x_\mathrm{c}} ):

Im Gegensatz zum Unternehmen im vollkommenen Wettbewerb, das für sein Produkt einen Marktpreis akzeptieren muss, kann der Monopolist den Verkaufspreis gewinnmaximierend festsetzen. Er muss dafür eine Nachfragefunktion, d. h. zu welchem Preis er wie viel von dem Produkt absetzen kann, annehmen. Alternativ kann er sich mit seiner Preispolitik schrittweise dem Gewinnoptimum nähern (Cobweb-Theorem).

,

bzw. als Umkehrfunktion die Preis-Absatz-Funktion als

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle p=p(x)} .

Daraus bestimmt sich der Gesamterlös (oft , hier Umsatz Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle U} ) als Preis × Menge

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle U(x)=p(x)x} .

Mit der Gesamtkostenfunktion Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle K(x)} erzielt das Unternehmen den Gewinn Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle G(x)} als

Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle G(x)=U(x)-K(x)} .

Um den maximalen Gewinn zu ermitteln, wird die erste Ableitung von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle G(x)} gebildet (d. h. Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle G'(x)} ) und gleich Null gesetzt. Die ermittelten Nullstellen (bei S-förmigem Kostenverlauf oder anderen nicht linearen Gewinnverläufen) müssen nun in die zweite Ableitung eingesetzt werden. Die Nullstelle, bei der diese zweite Ableitung negativ ist, ist die gewinnmaximale Ausbringungsmenge Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x_c} , die den cournotschen Punkt definiert. Um nun den cournotschen Punkt zu erhalten, wird der zu Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x_\mathrm{c}} gehörende Preis Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle p_\mathrm{c}} aus der Preis-Absatz-Funktion ermittelt.

Da man beim Maximieren der Gewinnfunktion wegen

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle G'(x)= U'(x) - K'(x)=0}

auch

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle U'(x) = K'(x)}

schreiben kann, folgt, dass sich der cournotsche Punkt auch berechnen lässt, indem man direkt die Grenzkosten dem Grenzerlös Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle U'(x)} gleichsetzt. Der Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x} -Wert des Schnittpunkts bildet die gewinnmaximale Absatzmenge Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x_\mathrm{c}} . Dieser muss in die Preis-Absatz-Funktion eingesetzt werden, um den gewinnmaximalen Preis zu bestimmen. Gewinnmaximale Absatzmenge und zugehöriger Preis bilden zusammen den cournotschen Punkt.

Zahlenbeispiel

Datei:Cournot.png
Absolute Werte graphisch: dunkelblaue Kurve Erlös, pinke Kurve Kosten und grüne Kurve der sich ergebende Gewinn, die gestrichtelte Linie zeigt den cournotschen Punkt

Ein monopolistisch agierendes Unternehmen produziert extraleichte Trekkingschuhe. Die Vertriebsleitung hat festgestellt, dass die Nachfrage Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x} [Stück Gebinde] nach diesen Schuhen vom Preis Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle p} [Geldeinheiten (GE)] abhängt, und zwar mit der Nachfragefunktion

.

Umgekehrt ergibt sich die Preis-Absatz-Funktion (Nachfragefunktion abhängig von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x} ) als

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle p=p(x)=10.000-100x} .

D. h., dass das Unternehmen bei einem Preis von 10.000 GE kein Paar mehr verkauft (Prohibitivpreis) und selbst bei einem Preis von 0 GE nicht mehr als 100 Gebinde verkauft (Sättigungsmenge).

Bewertet man die nachgefragte Menge Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x} mit dem jeweilig gültigen Preis, erhält man den Umsatz als Funktion

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle U=U(x)=xp(x)=10.000x-100x^2} .

Dem Unternehmen entstehen durch die Produktion der Trekkingschuhe Gesamtkosten, die von der Ausbringungsmenge Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x} [Stück Gebinde] abhängig sind. Die Kosten des Unternehmens lassen sich in der Kostenfunktion

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle K=K(x)=50.000+3.000x}

zusammenfassen. Der Gewinn berechnet sich dann als Umsatz – Kosten, also

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle G=G(x)=U(x)-K(x)=10.000x-100x^2-50.000-3.000x} ,

so dass man als Gewinnfunktion

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle G(x)= 7.000x-100x^2-50.000}

erhält.

Um das Gewinnmaximum im cournotschen Punkt zu erhalten, bestimmt man das Maximum der Gewinnfunktion durch Differenzieren von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle G(x)} :

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \frac {\mathrm{d}G}{\mathrm{d}x}= 7.000-200x} .

Das Nullsetzen der Ableitung ergibt dann die Lösung: Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x_\mathrm{c}=35} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle G_\mathrm{x}=72.500} .

Da die zweite Ableitung

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle G''=-200}

kleiner als Null ist, handelt es sich bei der Lösung um ein Gewinnmaximum.

Zur cournotschen Menge

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x_\mathrm{c} = 35 }

gehört der cournotsche Preis

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle p(x)=10000-100x} ,

also

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle p(35)=10000-100\cdot35} ,

also

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle p_\mathrm{c}=6500} .

Zum Preis von 6500 GE können also 35 Gebinde Schuhe verkauft werden. Damit erzielt das Unternehmen 72.500 GE Gewinn. (Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle G(35)=7000\cdot35-100\cdot35^2-50.000} )

Wie oben erklärt, ist es auch möglich, gleich zu setzen. Dies liefert dieselben Ergebnisse.

Die allgemeine Lösung der Gewinnoptimierung bei Wettbewerb sowie bei begrenzter Kapazität findet sich in [Gudehus 2007]. Wenn zur Kapazitätssteigerung investiert werden muss, sind auch die Fixkosten bei der Berechnung des absoluten Cournot-Punktes zu berücksichtigen.

Literatur

  • T. Gudehus: Dynamische Märkte, Praxis, Strategien und Nutzen für Wirtschaft und Gesellschaft. Springer, Berlin/ Heidelberg/ New York 2007, ISBN 978-3-540-72597-8, 12.4 Gewinnmaximierung. und 12.5 Cournotscher Punkt.

Weblinks

Einzelnachweise

  1. Artur Woll: Volkswirtschaftslehre. 12. Auflage. 1996, ISBN 3-8006-2091-X, S. 205.
  2. Edwin Böventer, Gerhard Illing: Einführung in die Mikroökonomie. 8., vollst. neu bearb. u. erw. Auflage. R. Oldenbourg, 1997, ISBN 3-486-23070-0, S. 300.