Lumineszenz

aus Wikipedia, der freien Enzyklopädie
Dies ist die aktuelle Version dieser Seite, zuletzt bearbeitet am 21. September 2022 um 16:50 Uhr durch imported>Jü(153697) (Punkt am Satzende VOR dem Einzelnachweis).
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)

Bei der Lumineszenz wird ein physikalisches System durch von außen zugeführte Energie in einen angeregten Zustand versetzt und emittiert beim Übergang in seinen Grundzustand Photonen.[1] Die Bezeichnung Lumineszenz bezeichnet entweder den Prozess (das Phänomen) oder die ausgesandte Strahlung.

Wenn zwischen der Absorption der Energie und der Emission kein Aktivierungsprozess stattfindet, dann spricht man von Fluoreszenz; wenn ein angeregter Zwischenzustand die Energie für eine gewisse Zeit „einfrieren“ kann, dann von Phosphoreszenz.

Unterscheidung nach Mechanismus der Anregung des Systems

Je nach Art der Anregung unterscheidet man verschiedene Arten der Lumineszenz:

Arten der Lumineszenz Die Anregung des Systems erfolgt durch … Beispiele und Bemerkungen
Elektrolumineszenz ein elektrisches Feld Leuchtdioden, EL-Folien oder OLEDs
Chemilumineszenz eine chemische Reaktion Luminol zum Nachweis von Blut
Candolumineszenz heterogen-katalytische Rekombination von Radikalen vermutlich im Glühstrumpf; wird in der Analytik verwendet
Biolumineszenz eine chemische Reaktion in lebenden Organismen Oxidation von Luciferin im Leuchtkäfer, Shining wood
Kathodolumineszenz Beschuss mit Elektronen Leuchtschicht einer Kathodenstrahlröhre, Kathodolumineszenzmikroskop
Radiolumineszenz oder Ionolumineszenz Bestrahlung mit Alpha- oder Beta-Strahlung oder anderen hochenergetischen Partikeln nachleuchtende Markierungen auf Zeigern durch Beimischen von Radium zu phosphoreszierendem Material
Photolumineszenz Photonen Nach der Art des strahlenden Übergangs unterscheidet man

Wenn es sich bei der absorbierten EM-Strahlung um Röntgenstrahlung handelt, verwendet man den Begriff Röntgenfluoreszenz.
Der Mößbauer-Effekt beschreibt Absorption und Emission von Gammastrahlung.

Optisch stimulierte Lumineszenz Freisetzung von im Material gespeicherter Energie durch Bestrahlung mit Licht Anwendung bei der Dosimetrie mit OSL-Dosimetern
Thermolumineszenz Freisetzung von im Material gespeicherter Energie durch Temperaturerhöhung Anwendung bei der Thermolumineszenzdatierung und Thermolumineszenzdosimetern
Sonolumineszenz Schallwellen (in Flüssigkeiten)
Tribolumineszenz verschiedene, verursacht oder ausgelöst durch Reibung oder Auseinanderreißen bei Zuckerkristallen oder beim Öffnen von selbstklebenden Briefumschlägen
Fractolumineszenz Zerbrechen von Kristallstrukturen Sonderfall der Tribolumineszenz
Lyolumineszenz Auflösen mancher Stoffe
Aquolumineszenz Auflösen von Kristallstrukturen in Wasser Sonderfall der Lyolumineszenz
Kristallolumineszenz Auskristallisieren von Kristallen Arsentrioxid
Piezolumineszenz Pressen von Quarzen verwandt mit Piezoelektrizität
Anti-Stokes-Lumineszenz Phononen in Festkörpern nichtlineare Raman-Spektroskopie

Fluoreszenz und Phosphoreszenz

Die verschiedenen Arten der Lumineszenz können auch nach der Dauer des Leuchtens nach Ende der Erregung eingeteilt werden. Ein sehr kurzes Nachleuchten (meist weniger als eine millionstel Sekunde) als unmittelbare Folge und Begleiterscheinung der Anregung bezeichnet man mit dem Begriff der Fluoreszenz, wohingegen Phosphoreszenz ein längeres Nachleuchten von mindestens 1/1000 Sekunde nach der Anregung beschreibt.

Beispiele für beide Vorgänge im Bändermodell: Durch die Anregung des Stoffes gelangen die Elektronen vom Valenzband in das Leitungsband. Im Falle der Fluoreszenz rekombinieren diese Leitungselektronen unter Emission von elektromagnetischer Strahlung direkt wieder mit einer Elektronenleerstelle im Valenzband. Bei der Phosphoreszenz hingegen werden, durch in das Material eingebrachte Störstellen, metastabile Zwischenniveaus in der verbotenen Zone erzeugt, die so genannten Haft- bzw. Aktivatorterme. Im Grundzustand sind die Aktivatorterme mit Elektronen besetzt, die Haftstellen bleiben leer. Nachdem die Elektronen durch die Anregung vom Valenzband in das Leitungsband gehoben wurden, werden die entstandenen Defektelektronen mit Elektronen aus den Aktivatortermen aufgefüllt. Die freien Elektronen sind bestrebt, mit den Defektelektronen aus dem Aktivatorterm zu rekombinieren. Dabei werden sie von den Haftstellen eingefangen. Es ist auch möglich, dass die Elektronen vom Valenzband direkt in die Haftstelle gehoben werden (direkte Anregung). Durch erneute Energieeinwirkung können diese Elektronen wieder in das Leitungsband gehoben werden und von dort aus unter Emission von Licht der Energie mit Defektelektronen aus dem Aktivatorterm rekombinieren.

Die Untersuchung der Lumineszenz beispielsweise bei Kristallen wird mittels des Phosphoroskops nach Becquerel durchgeführt.

Sonderfall: Erwärmung setzt anderweitig deponierte Energie frei

Die sogenannte Thermolumineszenz wurde 1663 von Robert Boyle entdeckt.[2] Er berichtete in diesem Jahr am 28. Oktober vor der Royal Society, dass er einen Diamanten im Dunkeln zu schwachem Leuchten brachte, indem er ihn im Bett an den wärmsten Teil seines nackten Körpers hielt.

In manchen Stoffen wie z. B. Quarz oder Feldspat wird Energie des Zerfalls natürlich vorkommender instabiler Nuklide sowie der kosmischen Strahlung, in Form von Strahlenschäden im Kristallgitter gespeichert. Dabei werden Elektronen in „Elektronenfallen“ zwischen Valenz- und Leitungsband festgesetzt. Beim Erhitzen auf Temperaturen um 300 °C bis 500 °C setzt thermisch stimulierte Lichtemission (Thermolumineszenz) ein: angeregte Elektronen verlassen ihren metastabilen Zustand und fallen unter Lichtemission auf niedrigere Energieniveaus zurück. Da nach relativ kurzer Zeit sämtliche angeregte Elektronen auf ein niedrigeres Energieniveau gefallen sind, tritt dieser Thermolumineszenz genannte Effekt nur beim ersten Erhitzen auf. Es kann auf die gespeicherte Energie rückgeschlossen werden. Diese hängt von der Intensität und der Zeitdauer der vorhergehenden akkumulierten Energie ab. Somit ergibt sich die Möglichkeit der Thermolumineszenzdatierung über Millionen von Jahren (Bestrahlungsalter). Weniger lange haltbar, dafür aber oft schon mit milder Temperaturerhöhung freizusetzen, ist die Energie von phosphoreszierenden Stoffen.

Der geleerte Energiespeicher kann benutzt werden, um die Energiedosis ionisierender Strahlung zu bestimmen, indem man nach der Exposition erneut erhitzt und die Lumineszenz misst. Geeignet sind Materialien mit bei Raumtemperatur stabilen Defekten, wie z. B. Lithiumfluorid, das zudem sehr strahlenempfindlich ist. Ergebnis ist ein Thermolumineszenzdosimeter. So kann auch eine Lebensmittelbestrahlung nachgewiesen werden.[3]

Thermolumineszenz-Messungen können auch in der Photosyntheseforschung wichtige Informationen liefern. Auch hier entstehen, nach Anregung mit Licht, metastabile Radikalpaare, die durch Wärmezufuhr rekombinieren. Peaktemperatur und Ausmaß des emittierten Lichtes lassen Rückschlüsse auf den Zustand des Photosyntheseapparates zu.

Literatur

  • Hans Kittel: Farben-Lack und Kunststofflexikon. Wissenschaftliche Verlagsgesellschaft Stuttgart 1952

Einzelnachweise

  1. Darstellung und Charakterisierung von Cadmiumsulfid-Aluminiumoxid-Nanokompositen, Dissertation von Ingo Heim, S. 28 – nebst weiteren Belegstellen dort.
  2. Newton, H.E., 1957. A history of luminescence from the earliest times until 1900. Philadelphia, American Philosophical Society., S. 126.
  3. G. Schwedt: Taschenatlas der Lebensmittelchemie. 2. vollst. überarb. u. erw. Aufl. Wiley-VCH, Weinheim 2005.

Weblinks

Commons: Luminescence – Sammlung von Bildern, Videos und Audiodateien
Wiktionary: Lumineszenz – Bedeutungserklärungen, Wortherkunft, Synonyme, Übersetzungen