Assoziativgesetz

aus Wikipedia, der freien Enzyklopädie
(Weitergeleitet von Assoziativität)
Bei assoziativen Verknüpfungen ist das Endergebnis dasselbe, auch wenn die Operationen in unterschiedlicher Reihenfolge ausgeführt werden.

Das Assoziativgesetz (lateinisch associare „vereinigen, verbinden, verknüpfen, vernetzen“), auf Deutsch Verknüpfungsgesetz oder auch Verbindungsgesetz, ist eine Regel aus der Mathematik. Eine (zweistellige) Verknüpfung ist assoziativ, wenn die Reihenfolge der Ausführung keine Rolle spielt. Anders gesagt: Die Klammerung mehrerer assoziativer Verknüpfungen ist beliebig. Deshalb kann man es anschaulich auch „Klammergesetz“ nennen.

Neben dem Assoziativgesetz sind Kommutativgesetz und Distributivgesetz von elementarer Bedeutung in der Algebra.

Definition

Eine binäre Verknüpfung auf einer Menge heißt assoziativ, wenn für alle das Assoziativgesetz

Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle a\star \left(b\star c\right)=\left(a\star b\right)\star c}

gilt. Die Klammern können dann weggelassen werden. Das gilt auch für mehr als drei Operanden.

Beispiele und Gegenbeispiele

Datei:Associativity of real number addition.svg
Die Assoziativität der Addition reeller Zahlen

Als Verknüpfungen auf den reellen Zahlen sind Addition und Multiplikation assoziativ. So gilt zum Beispiel

  Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 2+(3+7)=2+10=12 }

und

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (2\cdot 3)\cdot 7=6\cdot 7=42 \quad=}   Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 2\cdot (3\cdot 7)=2\cdot 21=42 } .

Reelle Subtraktion und Division sind hingegen nicht assoziativ, denn es ist

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 2 - (3 - 1) = 0 \quad\neq}   Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (2 - 3) - 1 = -2 }

und

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (4:2):2 = 1 \quad\neq}   Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 4:(2:2)= 4 } .

Auch die Potenz ist nicht assoziativ, da

  Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (2^2)^3 = 4^3 = 64 }

gilt. Bei (divergenten) unendlichen Summen kann es auf die Klammersetzung ankommen. So verliert die Addition die Assoziativität bei:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (1+(-1))+ (1+(-1))+ (1+(-1))+ (1+(-1))+ \ldots = 0+0+ \ldots \to 0}

aber

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 1+ ((-1)+1)+ ((-1)+1)+ ((-1)+1)+ \ldots = 1+0+0+ \ldots \to 1}

In endlichen Realisierungen wie dem Computer sind die Darstellungen der Zahlen in ihrer Größe begrenzt. Somit können weder Addition noch Multiplikation beliebig korrekt sein. Addition und Multiplikation von Festkommazahlen kann man bei vielen Maschinen so einstellen, dass diese anzeigen, wenn das Ergebnis inkorrekt wird, und innerhalb eines so definierten Gültigkeitsbereiches sind die Operationen assoziativ. Außerhalb dieses Gültigkeitsbereiches können die Operationen zwar assoziativ sein, was aber angesichts des falschen Ergebnisses keine Bedeutung hat. Bei Gleitkommazahlen werden nicht alle sog. Rundungsfehler angezeigt, so dass die Assoziativgesetze nicht wirklich gelten, wie das folgende Beispiel für die Addition mit 4-Bit-Mantissen zeigt:

(1.0002×20 + 1.0002×20) + 1.0002×24 = 1.0002×21 + 1.0002×24 = 1.0012×24
1.0002×20 + (1.0002×20 + 1.0002×24) = 1.0002×20 + 1.0002×24 = 1.0002×24

Solche Fehler können manchmal durch Ausschalten der Normalisierung verringert werden.
Darüber hinaus kann das Laufzeitverhalten von der Reihenfolge der Ausführung zweier Operationen stark abhängen.

Einordnung

Das Assoziativgesetz gehört zu den Gruppenaxiomen, wird aber bereits für die schwächere Struktur einer Halbgruppe gefordert.

Seitigkeit

Insbesondere bei nicht-assoziativen Verknüpfungen gibt es Konventionen einer seitigen Assoziativität.

Eine binäre Verknüpfung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle *} gilt als links-assoziativ, wenn

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \begin{array}{ll} a*b*c &:= (a*b)*c \qquad\qquad\quad\, \\ a*b*c*d &:= ((a*b)*c)*d \quad \\ \mbox{etc.} \end{array} }

aufzufassen ist.

  • Die nicht-assoziativen Operationen Subtraktion und Division werden gemeinhin links-assoziativ verstanden:[1][2][3]
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a-b-c} Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle = (a-b)-c } (Subtraktion)
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle = (a : b) : c } (Division)
  • Anwendung von Funktionen
    Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (f \, x \, y) = ((f \, x) \, y)}
    im Verfahren des Currying.

Eine binäre Verknüpfung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle *} heißt rechts-assoziativ, wenn gilt:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \begin{array}{rr} x*y*z :=& x*(y*z) \\ w*x*y*z :=& w*(x*(y*z)) \\ & \mbox{etc.} \end{array} }

Beispiel für eine rechts-assoziative Operation:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x^{y^z}=x^{(y^z)}}

Aber auch assoziative Operationen können Seitigkeit haben, wenn sie ins Unendliche zu iterieren sind.

  • Die dezimale Notation rechts vom Dezimalkomma
    Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 0{,}999\ldots = 0{,}9999\ldots = 0{,}99999\ldots \to 1 }
    ist eine links-assoziative Verkettung der Dezimalziffern, weil die Auswertung(sschleife) nicht rechts bei den Auslassungspunkten Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \ldots } beginnen kann, sondern links beginnen muss.
  • Die -adische Schreibweise
    Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \ldots 444_5 = \ldots 4444_5 = \ldots 44444_5 \to -1 }
    enthält mit der Juxtaposition eine rechts-assoziative Verkettungsoperation, weil die Auswertung rechts beginnen muss.

Schwächere Formen des Assoziativgesetzes

Folgende Abschwächungen des Assoziativgesetzes werden an anderer Stelle genannt/definiert:

  • Potenz-Assoziativität:
    Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a^{r+s} = (a^r)\circ (a^s)}
    • i-Potenz-Assoziativität:
      Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a^i \circ a = a \circ a^i}
    • Idemassoziativität:
      Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a \circ ( a \circ a ) = (a \circ a ) \circ a}
  • Alternativität:
    • Linksalternativität:
      Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a \circ ( a \circ b ) = ( a \circ a ) \circ b}
    • Rechtsalternativität:
      Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a \circ ( b \circ b ) = ( a \circ b ) \circ b}
  • Flexibilitätsgesetz:
    Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a \circ \left( b \circ a \right) = \left( a \circ b \right) \circ a}
  • Moufang-Identitäten:

    Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (a \circ b) \circ (c \circ a) = a \circ \Big((b \circ c) \circ a\Big)}
  • Bol-Identitäten:[4]
    • linke Bol-Identität:
      Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Big(b \circ (c \circ b)\Big) \circ a = b \circ \Big(c \circ (b \circ a)\Big)}
    • rechte Bol-Identität:
      Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Big( (a \circ b) \circ c\Big) \circ b = a \circ \Big( (b \circ c) \circ b\Big)}
  • Jordan-Identität:
    Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a \circ \Big( \left( a \circ a \right) \circ b \Big) = \left( a \circ a \right) \circ \left( a \circ b \right)}

Siehe auch

Literatur

  • Otto Forster: Analysis 1: Differential- und Integralrechnung einer Veränderlichen. Vieweg-Verlag, München 2008, ISBN 978-3-8348-0395-5.

Einzelnachweise

  1. Bronstein: Taschenbuch der Mathematik. Kapitel: 2.4.1.1, ISBN 978-3-8085-5673-3, S. 115–120
  2. George Mark Bergman: Order of arithmetic operations
  3. The Order of Operations. Education Place
  4. Gerrit Bol: Gewebe und Gruppen In: Mathematische Annalen, 114 (1), 1937, S. 414–431.