Beschränkte schwach-*-Topologie
Die beschränkte schwach-*-Topologie, kurz bw*-Topologie (nach der englischen Bezeichnung "bounded weak* topology"), ist eine im mathematischen Teilgebiet der Funktionalanalysis untersuchte Topologie auf dem Dualraum eines normierten Raums. Sie ist eng mit der schwach-*-Topologie verbunden.
Definition
Sei ein normierter Raum und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X'} sein Dualraum. Die bw*-Topologie ist die feinste Topologie auf Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle X'} , deren Relativtopologie auf allen beschränkten Mengen mit der schwach-*-Topologie übereinstimmt.
Definiert man zu jeder beschränkten Menge Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle B\subset X'} die Inklusion Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \iota_B:B\rightarrow X'} , so ist die bw*-Topologie die Finaltopologie der Abbildungen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \iota_B} . Eine Menge Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle U\subset X'} ist genau dann bw*-offen, wenn der Durchschnitt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle U\cap B} für alle beschränkten Mengen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle B\subset X'} relativ schwach-*-offen ist.
Basis der bw*-Topologie
Die hier beschriebene Basis der bw*-Topologie geht auf Jean Dieudonné zurück.[1] Ist ein normierter Raum, Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f\in X'} ein Element des Dualraums und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (x_n)_n} eine Nullfolge in Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X} , so sei
- Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle B(f,(x_{n})_{n}):=\{g\in X';\,|(f-g)x_{n}|<1{\text{ für alle }}n\in \mathbb {N} \}} .
Diese Mengen bilden eine Umgebungsbasis offener Mengen von . Da diese Mengen offenbar konvex sind, ist die bw*-Topologie eine lokalkonvexe Hausdorff-Topologie.[2] Ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (x_n)_n} eine Nullfolge, so ist durch
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle p_{(x_n)_n}(f) := \sup_{n\in\N}|f(x_n)|}
eine Halbnorm auf Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X'} definiert und die bw*-Topologie ist genau die von diesen Halbnormen erzeugte lokalkonvexe Topologie.
Vollständigkeit
Ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X} ein normierter Raum, so ist der Dualraum mit der bw*-Topologie vollständig, das heißt jedes bw*-Cauchy-Netz konvergiert. Genauer bedeutet das: Ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (f_\alpha)_\alpha} ein Netz in Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X'} , so dass es zu jeder Nullfolge aus Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X} einen Index Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \gamma} gibt, so dass Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f_\alpha -f_\beta \in B(0,(x_n)_n)} für alle Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \alpha,\beta > \gamma} , so gibt es ein Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f\in X'} mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f_\alpha \rightarrow f} bzgl. der bw*-Topologie.
Insbesondere ergibt sich, dass die bw*-Topologie für unendlichdimensionale Räume echt feiner ist als die schwach-*-Topologie ist, denn letztere ist bekanntlich nicht vollständig.[3]
bw*-stetige lineare Funktionale
Ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X} ein Banachraum, so fallen die schwach-*-stetigen und die bw*-stetigen linearen Funktionale auf Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X'} zusammen. Daraus ergibt sich
- Ein lineares Funktional auf Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X'} ist genau dann schwach-*-stetig, wenn die Einschränkung auf die Einheitskugel schwach-*-stetig ist.
Außerdem kann daraus sehr leicht der Satz von Krein-Šmulian über schwach-*-abgeschlossene, konvexe Mengen hergeleitet werden. Dies ist im unten angegebenen Lehrbuch[4] ausgeführt.
Kompakte Operatoren
Mittels der bw*-Topologie können kompakte Operatoren charakterisiert werden. Ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle T:X\rightarrow Y} ein stetiger, linearer Operator zwischen Banachräumen, so ist der adjungierte Operator bekanntlich stetig, wenn auf beiden Räumen die Normtopologie, die schwach-*-Topologie oder die bw*-Topologie betrachtet wird. Interessante Aussagen sind also erst zu erwarten, wenn man auf den Räumen unterschiedliche Topologien betrachtet. Es gilt folgender Satz[5]:
- Ein stetiger linearer Operator Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle T:X\rightarrow Y} zwischen Banachräumen ist genau dann kompakt, wenn der adjungierte Operator Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle T':Y'\rightarrow X'} stetig ist bzgl. der bw*-Topologie auf Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle Y'} und der Normtopologie auf Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X'} .
bw-Topologie und cbw-Topologie
In Analogie zur bw*-Topologie auf einem Dualraum kann man die bw-Topologie auf dem Ausgangsraum als feinste Topologie, die auf allen beschränkten Mengen mit der relativen schwachen Topologie übereinstimmt, definieren. Diese Topologie hat bei Weitem nicht die Bedeutung wie die bw*-Topologie, denn sie ist im Allgemeinen nicht lokalkonvex. 1974 hat R. F. Wheeler gezeigt, dass die bw-Topologie auf dem Folgenraum Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle c_0} nicht lokalkonvex ist,[6] und 1984 konnte J. Gómez Gil sogar zeigen, dass die bw-Topologie genau dann lokalkonvex ist, wenn der Raum reflexiv ist.[7] Für reflexive Räume Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X} bringt die bw-Topologie aber nichts Neues, denn dann ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X\cong X''} selbst ein Dualraum, und die bw-Topologie stimmt mit der bw*-Topologie überein, wenn man Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X} mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X''} identifiziert.
Um eine lokalkonvexe Topologie zu erhalten, definiert man auf Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X} die cbw-Topologie, die von allen konvexen, offenen Mengen der bw-Topologie erzeugt wird. Diese ist lokalkonvex und stimmt mit der relativen bw*-Topologie von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X''} überein, wenn man Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X} bzgl. der kanonischen Einbettung als Unterraum von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X''} auffasst.[8]
Einzelnachweise
- ↑ J. Dieudonné: Natural homomorphisms in Banach spaces, Proceedings American Mathematical Society (1950), Band 1, Seiten 54–59
- ↑ Robert E. Megginson: An Introduction to Banach Space Theory. Springer-Verlag, 1998, ISBN 0-387-98431-3, Satz 2.7.2
- ↑ Robert E. Megginson: An Introduction to Banach Space Theory. Springer-Verlag, 1998, ISBN 0-387-98431-3, Satz 2.7.6 mit Korollar 2.7.7
- ↑ Robert E. Megginson: An Introduction to Banach Space Theory. Springer-Verlag, 1998, ISBN 0-387-98431-3, Theorem 2.7.8 – 2.7.11
- ↑ Robert E. Megginson: An Introduction to Banach Space Theory. Springer-Verlag, 1998, ISBN 0-387-98431-3, Theorem 3.4.16
- ↑ R. F. Wheeler: The equicontinuous weak* topology and semi-reflexivity, Studia Mathematica (1972), Band 41, Seiten 243–256
- ↑ J. Gómez Gil: On local convexity of bounded weak topologies on Banach spaces, Pacific J. Math. (1984), Band 110, Nummer 1, Seiten 71–76
- ↑ J.G. Llavona: Approximation of Continuously Differentiable Functions, Elsevier Science Publishers (1986), ISBN 0-444-70128-1, Definition 4.2.2, Theorem 4.2.3