Clausius-Clapeyron-Gleichung
Die Clausius-Clapeyron-Gleichung wurde 1834 von Émile Clapeyron entwickelt und später von Rudolf Clausius aus den Theorien der Thermodynamik abgeleitet. Sie ist eine Spezialform der Clapeyron-Gleichung (Herleitung dort). Über die Clausius-Clapeyron-Gleichung lässt sich der Verlauf der Siedepunktskurve errechnen, d. h. der Phasengrenzlinie eines Phasendiagramms zwischen der flüssigen und der gasförmigen Phase eines Stoffes.
Thermodynamisch korrekte Gleichung
Die thermodynamisch korrekte Version der Gleichung ist
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \frac{\mathrm dp}{\mathrm dT} = \frac{\Delta_\text{vap} H}{\Delta_\text{vap} V \cdot T}}
mit
- – Dampfdruck,
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle T} – Temperatur in K,
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Delta_\text{vap} H} – molare Verdampfungsenthalpie (Index Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \text{vap}} für Verdampfung bzw. englisch vapor = Dampf) und
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Delta_\text{vap} V = V_\text{m(g)} - V_\text{m(fl)}} – Änderung des molaren Volumens zwischen gasförmiger und flüssiger Phase.
Approximation im Falle eines idealen Gases
Im Regelfall bezeichnet man als Clausius-Clapeyron-Gleichung die näherungsweise gültige Gleichung
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \frac{1}{p} \, \text{d}p = \frac{\Delta_\text{vap} H}{R \cdot T^2} \, \text{d}T}
mit
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle R = 8{,}314\,462\;\mathrm{J \, mol^{-1} \, K^{-1}}} – universelle Gaskonstante.
Herleitung:
Da bei den meisten Verwendungszwecken das molare Volumen des Gases deutlich größer ist als das der Flüssigkeit:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle V_\text{m(g)} \gg V_\text{m(fl)}} ,
wurde gegenüber der thermodynamisch korrekten Gleichung die Volumendifferenz durch das molare Volumen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle V_\text{m(g)}} des Gases ausgedrückt:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Delta_\text{vap} V \approx V_\text{m(g)}} .
Außerdem wurde für die gasförmige Phase ein ideales Gas angenommen, für das folgende Zustandsgleichung gilt:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle V_\text{m(g)} = \frac{RT}{p}} .
Integrierte Form
Betrachtet man die Verdampfungsenthalpie eines Stoffes als konstant über einen kleinen Temperaturbereich (Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle T_1} bis ), so kann die Clausius-Clapeyron-Gleichung über diesen Temperaturbereich integriert werden. Dann gilt
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \ln \frac{p_2}{p_1} = \frac {\Delta_\text{vap} H}{R} \cdot \left( \frac{1}{T_1} - \frac{1}{T_2} \right)}
mit
- dem bekannten Sättigungsdampfdruck Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle p_1} und der Temperatur Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle T_1} des Ausgangszustands,
- dem Druck Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle p_2} und der Temperatur Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle T_2} des zu berechnenden Zustands.
Weblinks
- Video: Dampfdruck von reinen Stoffen nach Clausius-Clapeyron – Wie wohl fühlt sich eine Komponente in einer Phase?. Jakob Günter Lauth (SciFox) 2013, zur Verfügung gestellt von der Technischen Informationsbibliothek (TIB), doi:10.5446/15670.
Literatur
- M.K. Yau, R.R. Rogers: Short Course in Cloud Physics, Third Edition, Butterworth-Heinemann, Januar 1989, 304 Seiten. ISBN 0-7506-3215-1.
- Gerd Wedler: Lehrbuch der Physikalischen Chemie: Fünfte, vollständig überarbeitete und aktualisierte Auflage, Wiley-VCH Verlag GmbH & Co. KGaA, August 2004, 1102 Seiten. ISBN 3527310665