Coulombsches Gesetz

aus Wikipedia, der freien Enzyklopädie
(Weitergeleitet von Coulombsche Kraft)

Das coulombsche Gesetz oder Coulomb-Gesetz ist die Basis der Elektrostatik. Es beschreibt die zwischen zwei Punktladungen wirkende Kraft.[1] Es gilt auch für kugelsymmetrisch verteilte elektrische Ladungen, die räumlich getrennt sind.

Der Betrag dieser Kraft ist proportional zum Produkt der beiden Ladungsmengen und umgekehrt proportional zum Quadrat des Abstandes der Kugelmittelpunkte. Die Kraft wirkt je nach Vorzeichen der Ladungen anziehend oder abstoßend in Richtung der Verbindungsgeraden der Mittelpunkte. Im anziehenden Fall verhält sie sich also ganz entsprechend wie die Kraft zwischen zwei Punktmassen nach dem Gravitationsgesetz.

Bei mehr als zwei Ladungen werden die einzelnen Kraftvektoren gemäß dem Superpositionsprinzip addiert.

Das coulombsche Gesetz ist Grundlage der elektrischen Influenz.

Coulomb-Kraft

Grundmechanismus: Ladungen mit gleichem Vorzeichen stoßen sich ab, Ladungen mit unterschiedlichen Vorzeichen ziehen sich an.
Veranschaulichung der quadratischen Abnahme mit der Entfernung nach Martin Wagenschein
Torsionspendel von Coulomb, mit dem er Kraftmessungen durchführte

Das coulombsche Gesetz wurde von Charles Augustin de Coulomb um 1785 entdeckt und in umfangreichen Experimenten bestätigt. Im Internationalen Einheitensystem, in skalarer Form und im Vakuum ist die Kraft demnach

,
, kugelsymmetrisch verteilte Ladungsmengen
Abstand zwischen den Mittelpunkten der Ladungsmengen
elektrische Feldkonstante

Vektorform

Die vektorielle Notation diskreter Ladungen liefert das Coulomb-Kraftfeld, dem eine Probeladung im Feld einer zweiten Ladung ausgesetzt ist, wie folgt:


Hierbei sind

  • ist die Kraft auf die Probeladung , hervorgerufen von der Ladung ,
  • und die Ortsvektoren der beiden Ladungsmittelpunkte und
  • der Einheitsvektor, der von (entlang der Verbindungslinie beider Ladungsmittelpunkte) in Richtung zeigt.

Wie zu sehen, müssen sich gleichnamige Ladungen, d. h. solche gleichen Vorzeichens, dabei obiger Festlegung gemäß abstoßen, da die Kraft in solchem Fall dieselbe Orientierung wie besitzt, während sich Ladungen mit ungleichem Vorzeichen (ungleichnamige Ladungen) anziehen, da die Kraft dann (analog zum newtonschen Gravitationsgesetz) die entgegengesetzte Orientierung von besitzt.

Wird der Koordinatenursprung an die Position der Ladung gelegt, vereinfacht sich die obige Gleichung zu:

.

Weiter ist dann

der Vektor der Feldstärke des von der Zentralladung erzeugten elektrischen Feldes an der Stelle , d. h. im Abstand vom Ursprung.

Wird die das Feld erzeugende Zentralladung durch eine im Raum verteilte Ladungswolke mit der Ladungsverteilung ersetzt, tritt an die Stelle der eingangs gegebenen Formel für die Coulomb-Kraft auf die Probeladung das Integral

.

Das coulombsche Gesetz in der eingangs gegebenen Form ist dabei als Spezialfall für eine punktförmige Ladungsverteilung in dieser Formel enthalten. Umgekehrt kann mittels Superpositionsprinzip auch diese allgemeinere Form aus dem coulombschen Gesetz hergeleitet werden.

Coulomb-Konstante

Der in den obigen Gleichungen auftretende Term

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle k_\mathrm{C} = \frac {1}{4 \pi \varepsilon_0}= \frac {1}{4 \pi} \mu_0 \, c^2 \approx 8{,}987551787 \cdot 10^9 \, \mathrm{\frac{Vm}{As}}}

wird auch als Coulomb-Konstante bezeichnet. Dabei ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle c} die Lichtgeschwindigkeit. Da die magnetische Feldkonstante Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mu_0} fast genau den Wert Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\textstyle 4\pi \cdot 10^{-7} \mathrm{\frac{N}{A^2}}} hat (bis zur Neudefinition der SI-Einheiten 2019 galt der Wert exakt), hat Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\textstyle k_\mathrm{C}} fast genau den Zahlenwert von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle c^2\cdot 10^{-7}} .

Form im CGS-System

In Gaußschen Einheiten und in anderen CGS-Einheiten wird das coulombsche Gesetz zur Definition der elektrischen Ladung genutzt. Eine Ladungseinheit wirkt auf eine zweite im Abstand 1 cm mit der Kraft 1 dyn. Die elektrische Basiseinheit der Einheitensysteme SI, CGS-ESU und CGS-EMU unterscheidet sich prinzipiell nur durch die Festlegung von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mu_0:}

  • Im CGS-ESU ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mu_0 = 4\pi/c^2} . Daher hat die Coulomb-Konstante in diesem Einheitensystem den Wert Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle k_\mathrm{C} = 1} .
  • Im CGS-EMU ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mu_0 = 4\pi} . Daher hat in diesem Einheitensystem die Coulomb-Konstante den Wert Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle k_\mathrm{C} = c^2} .

Coulomb-Potential

Das elektrische Feld ist, solange keine zeitliche Änderung des magnetischen Felds auftritt, wirbelfrei und die Energiedifferenz beim Transfer einer Ladung von A nach B daher in diesem Fall unabhängig vom konkret zurückgelegten Weg (siehe auch: konservatives Kraftfeld). Entsprechend kann man das elektrische Feld und die elektrische Kraft auch durch ein Potential beschreiben.

Für den Fall der einfachen Coulomb-Kraft ergibt sich das Coulomb-Potential, das für eine einzelne Punktladung Q wie folgt beschrieben werden kann:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Phi (r) = -\int \vec{E} \cdot \mathrm d\vec{s} = \frac{1}{4\pi\varepsilon_0} \frac{Q}{r} + C}

Dabei wird die Integrationskonstante C typischerweise null, so dass das Potential im Unendlichen verschwindet. Die Potentialdifferenz zwischen zwei Punkten ist der Spannungsabfall U zwischen diesen beiden Punkten. Das Coulomb-Potential gilt exakt nur für ruhende Ladungen. Für bewegte Punktladungen dagegen, bei denen auch Magnetfelder ins Spiel kommen, wird aus dem Coulomb-Potential ein Liénard-Wiechert-Potential.

Die potentielle elektrische Energie Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle W_\mathrm{pot}} ist ebenfalls ein Potential, nun bezüglich der elektrischen Kraft:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle W_\mathrm{pot} (r) = -\int \vec{F} \cdot \mathrm d\vec{s} = -q \, \int \vec{E} \cdot \mathrm d\vec{s} = q \, \Phi(r) = \frac{1}{4\pi\varepsilon_0} \frac{q\, Q}{r} + C}

Auch hier ist es üblich, die Randbedingung so zu wählen, dass die potentielle Energie im Unendlichen Null wird, Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle C} also auch hier gleich null ist.

Coulomb-Kraft in einem Medium

Das coulombsche Gesetz lässt sich auf einfache Weise auf den Fall von Ladungen in homogenen, isotropen, linearen Medien erweitern. Das die Ladungen umgebende Material muss dazu in guter Näherung diese Eigenschaften besitzen:

  • Es ist elektrisch neutral.
  • Es füllt den Raum zwischen den Ladungen und um diese herum gleichmäßig (homogen) aus.
  • Die Polarisierbarkeit des Mediums ist richtungsunabhängig.
  • Die Polarisierung ist proportional zum elektrischen Feld, das von den Ladungen erzeugt wird.

Insbesondere verlangt die Homogenität, dass der atomare Charakter der Materie im Vergleich zum Abstand der Ladungen vernachlässigbar ist.

Für solche Medien schreibt sich das coulombsche Gesetz in gleicher Form wie im Vakuum, mit dem einzigen Unterschied, dass Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \varepsilon_0} durch Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \varepsilon = \varepsilon_0\,\varepsilon_\mathrm{r}} ersetzt wird:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle F = \frac{1}{4\pi\varepsilon} \frac{q_1\, q_2}{r^2} }

Die relative Permittivität Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \varepsilon_\mathrm{r}} ist bei isotropen Medien eine Materialkonstante, die der Polarisierbarkeit des Mediums Rechnung trägt. Sie kann sowohl durch Messungen als auch aus theoretischen Überlegungen gewonnen werden.

In der Umkehrung gilt im Vakuum Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \varepsilon_\mathrm{r}=1} .

Literatur

  • Dieter Meschede: Gerthsen Physik. 23. Auflage, Springer, Berlin/Heidelberg/New York 2006, ISBN 3-540-25421-8. 25. Auflage 2015, ISBN 978-3-662-45976-8.

Weblinks

Commons: Coulombsches Gesetz – Sammlung von Bildern, Videos und Audiodateien

Einzelnachweise

  1. Herbert Daniel: Elektrodynamik – Relativistische Physik. Walter de Gruyter, 1997, ISBN 978-3-11-015777-2 (google.com [abgerufen am 5. Mai 2021]).