Zur Beschreibungsseite auf Commons

Datei:Julia set z+0.5z2-0.5z3.png

aus Wikipedia, der freien Enzyklopädie

Originaldatei(2.000 × 1.000 Pixel, Dateigröße: 71 KB, MIME-Typ: image/png)

Commons-logo.svg

Diese Datei und die Informationen unter dem roten Trennstrich werden aus dem zentralen Medienarchiv Wikimedia Commons eingebunden.

Zur Beschreibungsseite auf Commons


Beschreibung

Beschreibung
English: Julia set . Construction of polynomial (location) and precise description by Marc Meidlinger: "Cubic parabolic set with interior"[1] "The polynomial has been constructed to have a parabolic fix point at the origin (f`=1) and an attracting cycle at x=1."
Datum
Quelle Eigenes Werk
Urheber Adam majewski

Lizenz

Ich, der Urheber dieses Werkes, veröffentliche es unter der folgenden Lizenz:
w:de:Creative Commons
Namensnennung Weitergabe unter gleichen Bedingungen
Dieses Werk darf von dir
  • verbreitet werden – vervielfältigt, verbreitet und öffentlich zugänglich gemacht werden
  • neu zusammengestellt werden – abgewandelt und bearbeitet werden
Zu den folgenden Bedingungen:
  • Namensnennung – Du musst angemessene Urheber- und Rechteangaben machen, einen Link zur Lizenz beifügen und angeben, ob Änderungen vorgenommen wurden. Diese Angaben dürfen in jeder angemessenen Art und Weise gemacht werden, allerdings nicht so, dass der Eindruck entsteht, der Lizenzgeber unterstütze gerade dich oder deine Nutzung besonders.
  • Weitergabe unter gleichen Bedingungen – Wenn du das Material wiedermischst, transformierst oder darauf aufbaust, musst du deine Beiträge unter der gleichen oder einer kompatiblen Lizenz wie das Original verbreiten.


c source code

/*

  Adam Majewski
  adammaj1 aaattt o2 dot pl  // o like oxygen not 0 like zero 
  
  
  


"Cubic parabolic set with interior"

The polynomial f(z)=z+(1/2)*z^2−(1/2)*z^3 has been constructed to have a parabolic fix point at the origin (f`=1) and an attracting cycle at x=1. For this set, the TSA (after some modifications) can detect interior (see image below, immediate basin of the parabolic fix point in yellow).

https://fractalforums.org/fractal-mathematics-and-new-theories/28/parabolic-julia-sets/3091/msg23033#msg23033



coefficients read from input file cubic_parab.txt
	degree 3 coefficient = ( -0.5000000000000000 +0.0000000000000000*i) 
	degree 2 coefficient = ( +0.5000000000000000 +0.0000000000000000*i) 
	degree 1 coefficient = ( +1.0000000000000000 +0.0000000000000000*i) 

Input polynomial p(z)=(-0.5+0i)*z^3+(0.5+0i)*z^2+(1+0i)*z^1

2 critical points found

	cp#0: -0.54858377035486349804,3.0709403358457930956e-22 . It's critical orbit is bounded and enters cycle #0 length=1 and it's stability = |multiplier|=0.99992 =parabolic 
cycle = {
-7.9907621648727658256e-05,1.6594893104474807034e-45 ; }

	cp#1: 1.2152504370215302387,2.9560397788833490951e-23 . It's critical orbit is bounded and enters cycle #1 length=1 and it's stability = |multiplier|=0.5 =attractive 
cycle = {
1,0 ; }
  
  
  Structure of a program or how to analyze the program 
  
  
  ============== Image X ========================
  
  DrawImageOfX -> DrawPointOfX -> ComputeColorOfX 
  
  first 2 functions are identical for every X
  check only last function =  ComputeColorOfX
  which computes color of one pixel !
  
  

   
  ==========================================

  
  ---------------------------------
  indent d.c 
  default is gnu style 
  -------------------



  c console progam 
  
	export  OMP_DISPLAY_ENV="TRUE"	
  	gcc d.c -lm -Wall -march=native -fopenmp
  	time ./a.out > b.txt


  gcc d.c -lm -Wall -march=native -fopenmp


  time ./a.out

  time ./a.out >i.txt
  time ./a.out >e.txt
  
  
  
  
  
  
  convert -limit memory 1000mb -limit disk 1gb dd30010000_20_3_0.90.pgm -resize 2000x2000 10.png

  
  
  
*/

#include <stdio.h>
#include <stdlib.h>		// malloc
#include <string.h>		// strcat
#include <math.h>		// M_PI; needs -lm also
#include <complex.h>
#include <omp.h>		// OpenMP
#include <limits.h>		// Maximum value for an unsigned long long int



// https://sourceforge.net/p/predef/wiki/Standards/

#if defined(__STDC__)
#define PREDEF_STANDARD_C_1989
#if defined(__STDC_VERSION__)
#if (__STDC_VERSION__ >= 199409L)
#define PREDEF_STANDARD_C_1994
#endif
#if (__STDC_VERSION__ >= 199901L)
#define PREDEF_STANDARD_C_1999
#endif
#endif
#endif




/* --------------------------------- global variables and consts ------------------------------------------------------------ */



// virtual 2D array and integer ( screen) coordinate
// Indexes of array starts from 0 not 1 
//unsigned int ix, iy; // var
static unsigned int ixMin = 0;	// Indexes of array starts from 0 not 1
static unsigned int ixMax;	//
static unsigned int iWidth;	// horizontal dimension of array

static unsigned int iyMin = 0;	// Indexes of array starts from 0 not 1
static unsigned int iyMax;	//

static unsigned int iHeight = 5000;	//  
// The size of array has to be a positive constant integer 
static unsigned long long int iSize;	// = iWidth*iHeight; 

// memmory 1D array 
unsigned char *data;
unsigned char *edge;
//unsigned char *edge2;

// unsigned int i; // var = index of 1D array
//static unsigned int iMin = 0; // Indexes of array starts from 0 not 1
static unsigned int iMax;	// = i2Dsize-1  = 
// The size of array has to be a positive constant integer 
// unsigned int i1Dsize ; // = i2Dsize  = (iMax -iMin + 1) =  ;  1D array with the same size as 2D array


// dx = 2*dy compare setup : iWidth = iHeight*2;
static const double ZxMin = -2.2;	//-0.05;
static const double ZxMax = 2.6;	//0.75;
static const double ZyMin = -1.2;	//-0.1;
static const double ZyMax = 1.2;	//0.7;
static double PixelWidth;	// =(ZxMax-ZxMin)/ixMax;
static double PixelHeight;	// =(ZyMax-ZyMin)/iyMax;
static double ratio;


/*
ER = pow(10,ERe);
   AR = pow(10,-ARe);
 */
//int ARe ;			// increase ARe until black ( unknown) points disapear 
//int ERe ;
double ER;
double ER2;			//= 1e60;
double AR; // bigger values do not works
double AR2;
double AR12;



int IterMax = 100000;


/* colors = shades of gray from 0 to 255 

 unsigned char colorArray[2][2]={{255,231},    {123,99}};
 color = 245;  exterior 
*/
unsigned char iColorOfExterior = 245;
unsigned char iColorOfInterior1 = 99;
unsigned char iColorOfInterior2 = 183;
unsigned char iColorOfBoundary = 0;
unsigned char iColorOfUnknown = 5;

// pixel counters
unsigned long long int uUnknown = 0;
unsigned long long int uInterior = 0;
unsigned long long int uExterior = 0;



// periodic points = attractors
complex double zp=0.0;
complex double za= 1.0;

/* ------------------------------------------ functions -------------------------------------------------------------*/





//------------------complex numbers -----------------------------------------------------





// from screen to world coordinate ; linear mapping
// uses global cons
double
GiveZx (int ix)
{
  return (ZxMin + ix * PixelWidth);
}

// uses globaal cons
double
GiveZy (int iy)
{
  return (ZyMax - iy * PixelHeight);
}				// reverse y axis


complex double
GiveZ (int ix, int iy)
{
  double Zx = GiveZx (ix);
  double Zy = GiveZy (iy);

  return Zx + Zy * I;




}



double cabs2(complex double z){

	return creal(z)*creal(z)+cimag(z)*cimag(z);


}






// =====================
int IsPointInsideTrap1(complex double  z){

	
	 
	
	if ( cabs2(z+AR12)<AR2) {return 1;} // circle with prabolic point zp on it's boundary
	return 0; // outside



}



// =====================
int IsPointInsideTrap2(complex double  z){

	
	if (cabs2(z - za) <AR2) {return 1;} // circle around periodic point
	
	return 0; // outside



}









// ****************** DYNAMICS = trap tests ( target sets) ****************************


/* -----------  array functions = drawing -------------- */

/* gives position of 2D point (ix,iy) in 1D array  ; uses also global variable iWidth */
unsigned int
Give_i (unsigned int ix, unsigned int iy)
{
  return ix + iy * iWidth;
}



// f(z)=1+z−3z2−3.75z3+1.5z4+2.25z5
unsigned char
ComputeColor_Fatou (complex double z, int IterMax)
{



	complex double z2;
	complex double z3;
	double r2;


  	int i;			// number of iteration
  	for (i = 0; i < IterMax; ++i)
    	{


		z2 = z*z;
		z3 = z*z2;

      		z = z +0.5*z2 -0.5*z3;		// complex iteration =z+(1/2)*z^2−(1/2)*z^3 
		r2 =cabs2(z);
		
      		if (r2 > ER2) // esaping = exterior
		{
	  		uExterior += 1;
	  		return iColorOfExterior;
		}			
	
		if ( IsPointInsideTrap1(z)) {
			uInterior +=1;
			return iColorOfInterior1;}
	
		if (IsPointInsideTrap2(z)){
			uInterior +=1;
			return iColorOfInterior2;}




    	}

  	uUnknown += 1;
  	return iColorOfUnknown;


}





// plots raster point (ix,iy) 
int
DrawFatouPoint (unsigned char A[], int ix, int iy, int IterMax)
{
  int i;			/* index of 1D array */
  unsigned char iColor = 0;
  complex double z;


  i = Give_i (ix, iy);		/* compute index of 1D array from indices of 2D array */
  z = GiveZ (ix, iy);
  iColor = ComputeColor_Fatou (z, IterMax);
  A[i] = iColor;		// interior

  return 0;
}




// fill array 
// uses global var :  ...
// scanning complex plane 
int
DrawFatouImage (unsigned char A[], int IterMax)
{
  unsigned int ix, iy;		// pixel coordinate 

  fprintf (stdout, "compute Fatou image \n");
  // for all pixels of image 
#pragma omp parallel for schedule(dynamic) private(ix,iy) shared(A, ixMax , iyMax, uUnknown, uInterior, uExterior)
  for (iy = iyMin; iy <= iyMax; ++iy)
    {
      fprintf (stderr, " %d from %d \r", iy, iyMax);	//info 
      for (ix = ixMin; ix <= ixMax; ++ix)
	DrawFatouPoint (A, ix, iy, IterMax);	//  
    }

  return 0;
}


//=========



int IsInside (int x, int y, int xcenter, int ycenter, int r){

	
	double dx = x- xcenter;
	double dy = y - ycenter;
	double d = sqrt(dx*dx+dy*dy);
	if (d<r) 
		return 1;
	return 0;
	  

} 

int PlotBigPoint(complex double z, unsigned char A[]){

	
	unsigned int ix_seed = (creal(z)-ZxMin)/PixelWidth;
	unsigned int iy_seed = (ZyMax - cimag(z))/PixelHeight;
	unsigned int i;
	
	
	 /* mark seed point by big pixel */
  	int iSide =3.0*iWidth/2000.0 ; /* half of width or height of big pixel */
  	int iY;
  	int iX;
  	for(iY=iy_seed-iSide;iY<=iy_seed+iSide;++iY){ 
    		for(iX=ix_seed-iSide;iX<=ix_seed+iSide;++iX){ 
    			if (IsInside(iX, iY, ix_seed, iy_seed, iSide)) {
      			i= Give_i(iX,iY); /* index of _data array */
      			A[i]= 255-A[i];}}}
	
	
	return 0;
	
}


// fill array 
// uses global var :  ...
// scanning complex plane 
int MarkAttractors (unsigned char A[])
{
  
	
	
	
  	fprintf (stderr, "mark attractors \n");
  
  	PlotBigPoint(zp, A); // period 3 parabolic cycle
    	PlotBigPoint(za, A);	// period 3 attracting cycle
    		 
      	

  	return 0;
}


// =====================
int IsPointInsideTraps(unsigned int ix, unsigned int iy){

	
	complex double  z = GiveZ (ix, iy);
	
	if ( IsPointInsideTrap1(z)) {return 1;} // circle with prabolic point on it's boundary
	
	if (IsPointInsideTrap2(z)) {return 1;}
	
	return 0; // outside



}





int MarkTraps(unsigned char A[]){

	unsigned int ix, iy;		// pixel coordinate 
	unsigned int i;


  	fprintf (stderr, "Mark traps \n");
  	// for all pixels of image 
	#pragma omp parallel for schedule(dynamic) private(ix,iy) shared(A, ixMax , iyMax, uUnknown, uInterior, uExterior)
  	for (iy = iyMin; iy <= iyMax; ++iy)
    	{
      		fprintf (stderr, " %d from %d \r", iy, iyMax);	//info 
      		for (ix = ixMin; ix <= ixMax; ++ix){
			if (IsPointInsideTraps(ix, iy)) {
      				i= Give_i(ix,iy); /* index of _data array */
      				A[i]= 255-A[i]; // inverse color
      				}}}
  	return 0;
}






int PlotPoint(complex double z, unsigned char A[]){

	
	unsigned int ix = (creal(z)-ZxMin)/PixelWidth;
	unsigned int iy = (ZyMax - cimag(z))/PixelHeight;
	unsigned int i = Give_i(ix,iy); /* index of _data array */
	
	
	A[i]= 255-A[i]; // Mark point with inveres color
	
	
	return 0;
	
}




// ***********************************************************************************************
// ********************** edge detection usung Sobel filter ***************************************
// ***************************************************************************************************

// from Source to Destination
int ComputeBoundaries(unsigned char S[], unsigned char D[])
{
 
  unsigned int iX,iY; /* indices of 2D virtual array (image) = integer coordinate */
  unsigned int i; /* index of 1D array  */
  /* sobel filter */
  unsigned char G, Gh, Gv; 
  // boundaries are in D  array ( global var )
 
  // clear D array
  memset(D, iColorOfExterior, iSize*sizeof(*D)); // for heap-allocated arrays, where N is the number of elements = FillArrayWithColor(D , iColorOfExterior);
 
  // printf(" find boundaries in S array using  Sobel filter\n");   
#pragma omp parallel for schedule(dynamic) private(i,iY,iX,Gv,Gh,G) shared(iyMax,ixMax)
  for(iY=1;iY<iyMax-1;++iY){ 
    for(iX=1;iX<ixMax-1;++iX){ 
      Gv= S[Give_i(iX-1,iY+1)] + 2*S[Give_i(iX,iY+1)] + S[Give_i(iX-1,iY+1)] - S[Give_i(iX-1,iY-1)] - 2*S[Give_i(iX-1,iY)] - S[Give_i(iX+1,iY-1)];
      Gh= S[Give_i(iX+1,iY+1)] + 2*S[Give_i(iX+1,iY)] + S[Give_i(iX-1,iY-1)] - S[Give_i(iX+1,iY-1)] - 2*S[Give_i(iX-1,iY)] - S[Give_i(iX-1,iY-1)];
      G = sqrt(Gh*Gh + Gv*Gv);
      i= Give_i(iX,iY); /* compute index of 1D array from indices of 2D array */
      if (G==0) {D[i]=255;} /* background */
      else {D[i]=0;}  /* boundary */
    }
  }
 
   
 
  return 0;
}



// copy from Source to Destination
int CopyBoundaries(unsigned char S[],  unsigned char D[])
{
 
  unsigned int iX,iY; /* indices of 2D virtual array (image) = integer coordinate */
  unsigned int i; /* index of 1D array  */
 
 
  //printf("copy boundaries from S array to D array \n");
  for(iY=1;iY<iyMax-1;++iY)
    for(iX=1;iX<ixMax-1;++iX)
      {i= Give_i(iX,iY); if (S[i]==0) D[i]=0;}
 
 
 
  return 0;
}
















// *******************************************************************************************
// ********************************** save A array to pgm file ****************************
// *********************************************************************************************

int
SaveArray2PGMFile (unsigned char A[], int a, int b,  int c, char *comment)
{

  FILE *fp;
  const unsigned int MaxColorComponentValue = 255;	/* color component is coded from 0 to 255 ;  it is 8 bit color file */
  char name[100];		/* name of file */
  snprintf (name, sizeof name, "%d_%d_%d", a, b, c );	/*  */
  char *filename = strcat (name, ".pgm");
  char long_comment[200];
  sprintf (long_comment, "fc(z)= z+(1/2)*z^2−(1/2)*z^3  ; %s\tER = %e\tAR =%e", comment, ER, AR);





  // save image array to the pgm file 
  fp = fopen (filename, "wb");	// create new file,give it a name and open it in binary mode 
  fprintf (fp, "P5\n # %s\n %u %u\n %u\n", long_comment, iWidth, iHeight, MaxColorComponentValue);	// write header to the file
  fwrite (A, iSize, 1, fp);	// write array with image data bytes to the file in one step 
  fclose (fp);

  // info 
  printf ("File %s saved ", filename);
  if (long_comment == NULL || strlen (long_comment) == 0)
    printf ("\n");
  else
    printf (". Comment = %s \n", long_comment);

  return 0;
}




int
PrintCInfo ()
{

  printf ("gcc version: %d.%d.%d\n", __GNUC__, __GNUC_MINOR__, __GNUC_PATCHLEVEL__);	// https://stackoverflow.com/questions/20389193/how-do-i-check-my-gcc-c-compiler-version-for-my-eclipse
  // OpenMP version is displayed in the console : export  OMP_DISPLAY_ENV="TRUE"

  printf ("__STDC__ = %d\n", __STDC__);
  printf ("__STDC_VERSION__ = %ld\n", __STDC_VERSION__);
  printf ("c dialect = ");
  switch (__STDC_VERSION__)
    {				// the format YYYYMM 
    case 199409L:
      printf ("C94\n");
      break;
    case 199901L:
      printf ("C99\n");
      break;
    case 201112L:
      printf ("C11\n");
      break;
    case 201710L:
      printf ("C18\n");
      break;
      //default : /* Optional */

    }

  return 0;
}


int
PrintProgramInfo ()
{


  // display info messages
  printf ("Numerical approximation of Julia set for fc(z)= z+(1/2)*z^2−(1/2)*z^3  \n");
  //printf ("iPeriodParent = %d \n", iPeriodParent);
  //printf ("iPeriodOfChild  = %d \n", iPeriodChild);
  //printf ("parameter c = ( %.16f ; %.16f ) \n", creal (c), cimag (c));

  printf ("Image Width = %f in world coordinate\n", ZxMax - ZxMin);
  printf ("PixelWidth = %.16f \n", PixelWidth);
  printf ("AR = %.16f = %f *PixelWidth\n", AR, AR / PixelWidth);


  printf("pixel counters\n");
  printf ("uUnknown = %llu\n", uUnknown);
  printf ("uExterior = %llu\n", uExterior);
  printf ("uInterior = %llu\n", uInterior);
  printf ("Sum of pixels  = %llu\n", uInterior+uExterior + uUnknown);
  printf ("all pixels of the array = iSize = %llu\n", iSize);


  // image corners in world coordinate
  // center and radius
  // center and zoom
  // GradientRepetition
  printf ("Maximal number of iterations = iterMax = %d \n", IterMax);
  printf ("ratio of image  = %f ; it should be 1.000 ...\n", ratio);
  //




  return 0;
}






// *****************************************************************************
//;;;;;;;;;;;;;;;;;;;;;;  setup ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
// **************************************************************************************

int
setup ()
{

  fprintf (stderr, "setup start\n");






  /* 2D array ranges */

  iWidth = iHeight*2;
  iSize = iWidth * iHeight;	// size = number of points in array 
  // iy
  iyMax = iHeight - 1;		// Indexes of array starts from 0 not 1 so the highest elements of an array is = array_name[size-1].
  //ix

  ixMax = iWidth - 1;

  /* 1D array ranges */
  // i1Dsize = i2Dsize; // 1D array with the same size as 2D array
  iMax = iSize - 1;		// Indexes of array starts from 0 not 1 so the highest elements of an array is = array_name[size-1].

  /* Pixel sizes */
  PixelWidth = (ZxMax - ZxMin) / ixMax;	//  ixMax = (iWidth-1)  step between pixels in world coordinate 
  PixelHeight = (ZyMax - ZyMin) / iyMax;
  ratio = ((ZxMax - ZxMin) / (ZyMax - ZyMin)) / ((double) iWidth / (double) iHeight);	// it should be 1.000 ...

  ER = 5.0; // it is bigger then 2  here !!!!!!
  ER2 = ER*ER;
  AR = PixelWidth*10.0*iWidth/2000.0 ; // 
  AR2 = AR * AR;
  AR12 = AR/2.0;



  	/* create dynamic 1D arrays for colors ( shades of gray ) */
  	data = malloc (iSize * sizeof (unsigned char));

	edge = malloc (iSize * sizeof (unsigned char));
  	if (data == NULL || edge == NULL)
    		{
      			fprintf (stderr, " Could not allocate memory");
      			return 1;
    		}





 


  fprintf (stderr, " end of setup \n");

  return 0;

}				// ;;;;;;;;;;;;;;;;;;;;;;;;; end of the setup ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;




int
end ()
{


  fprintf (stderr, " allways free memory (deallocate )  to avoid memory leaks \n");	// https://en.wikipedia.org/wiki/C_dynamic_memory_allocation
  free (data);
  free(edge);


  PrintProgramInfo ();
  PrintCInfo ();
  return 0;

}

// ********************************************************************************************************************
/* -----------------------------------------  main   -------------------------------------------------------------*/
// ********************************************************************************************************************

int
main ()
{
  	setup ();


  	DrawFatouImage (data, IterMax);	// first find Fatou
  	SaveArray2PGMFile (data, iWidth, IterMax, 0, "Fatou, name = iWidth_IterMax_n");
  
  	ComputeBoundaries(data,edge);
  	SaveArray2PGMFile (edge, iWidth, IterMax, 1, "Boundaries of Fatou; name = iWidth_IterMax_n"); 
  
  	CopyBoundaries(edge,data);
  	SaveArray2PGMFile (data, iWidth, IterMax, 2, "Fatou with boundaries; name = iWidth_IterMax_n"); 
  
  	//MarkAttractors(data);
  	MarkTraps(data);
  	SaveArray2PGMFile (data, iWidth, IterMax, 4, "Fatou with boundaries and traps; name = iWidth_IterMax_n"); 

  end ();

  return 0;
}


Text output


OPENMP DISPLAY ENVIRONMENT BEGIN
  _OPENMP = '201511'
  OMP_DYNAMIC = 'FALSE'
  OMP_NESTED = 'FALSE'
  OMP_NUM_THREADS = '8'
  OMP_SCHEDULE = 'DYNAMIC'
  OMP_PROC_BIND = 'FALSE'
  OMP_PLACES = ''
  OMP_STACKSIZE = '0'
  OMP_WAIT_POLICY = 'PASSIVE'
  OMP_THREAD_LIMIT = '4294967295'
  OMP_MAX_ACTIVE_LEVELS = '2147483647'
  OMP_CANCELLATION = 'FALSE'
  OMP_DEFAULT_DEVICE = '0'
  OMP_MAX_TASK_PRIORITY = '0'
  OMP_DISPLAY_AFFINITY = 'FALSE'
  OMP_AFFINITY_FORMAT = 'level %L thread %i affinity %A'
OPENMP DISPLAY ENVIRONMENT END


File 10000_100000_0.pgm saved . Comment = fc(z)= z+(1/2)*z^2−(1/2)*z^3  ; Fatou, name = iWidth_IterMax_n	ER = 5.000000e+00	AR =2.400240e-02 
File 10000_100000_1.pgm saved . Comment = fc(z)= z+(1/2)*z^2−(1/2)*z^3  ; Boundaries of Fatou; name = iWidth_IterMax_n	ER = 5.000000e+00	AR =2.400240e-02 
File 10000_100000_2.pgm saved . Comment = fc(z)= z+(1/2)*z^2−(1/2)*z^3  ; Fatou with boundaries; name = iWidth_IterMax_n	ER = 5.000000e+00	AR =2.400240e-02 
File 10000_100000_4.pgm saved . Comment = fc(z)= z+(1/2)*z^2−(1/2)*z^3  ; Fatou with boundaries and traps; name = iWidth_IterMax_n	ER = 5.000000e+00	AR =2.400240e-02 
Numerical approximation of Julia set for fc(z)= z+(1/2)*z^2−(1/2)*z^3  
Image Width = 4.800000 in world coordinate
PixelWidth = 0.0004800480048005 
AR = 0.0240024002400240 = 50.000000 *PixelWidth
pixel counters
uUnknown = 0
uExterior = 21913761
uInterior = 16793971
Sum of pixels  = 38707732
all pixels of the array = iSize = 50000000
Maximal number of iterations = iterMax = 100000 
ratio of image  = 1.000000 ; it should be 1.000 ...
gcc version: 9.3.0
__STDC__ = 1
__STDC_VERSION__ = 201710
c dialect = C18

real	0m4,655s
user	0m34,184s
sys	0m0,220s

  1. fractalforums.org : parabolic-julia-sets

Kurzbeschreibungen

Ergänze eine einzeilige Erklärung, was diese Datei darstellt.
Julia set z+0.5z^2-0.5z^3

In dieser Datei abgebildete Objekte

Motiv

72.469 Byte

1.000 Pixel

2.000 Pixel

image/png

c8a4fcbadd02c5d7b3adbd61c678c20171846a75

Dateiversionen

Klicke auf einen Zeitpunkt, um diese Version zu laden.

Version vomVorschaubildMaßeBenutzerKommentar
aktuell20:28, 8. Aug. 2020Vorschaubild der Version vom 20:28, 8. Aug. 20202.000 × 1.000 (71 KB)wikimediacommons>Soul windsurferUploaded own work with UploadWizard

Die folgende Seite verwendet diese Datei:

Metadaten