Zur Beschreibungsseite auf Commons

Datei:Line integral of scalar field.gif

aus Wikipedia, der freien Enzyklopädie

Line_integral_of_scalar_field.gif(400 × 300 Pixel, Dateigröße: 580 KB, MIME-Typ: image/gif, Endlosschleife, 61 Bilder, 39 s)

Commons-logo.svg

Diese Datei und die Informationen unter dem roten Trennstrich werden aus dem zentralen Medienarchiv Wikimedia Commons eingebunden.

Zur Beschreibungsseite auf Commons


Beschreibung

Beschreibung
English: Line integral of a scalar field, f. The area under the curve C, traced on the surface defined by z = f(x,y), is the value of the integral. See full description.
فارسی: انتگرال خطی یک میدان اسکالر f. مقدار انتگرال مساحت زیر منحنی C تعریف شده توسط سطح (z = f(x,y است.
Français : L′intégrale curviligne d′un champ scalaire, f. L′aire sous la courbe C, tracée sur la surface définie par z = f(x,y), est la valeur de l'intégrale.
Italiano: Integrale di linea di un campo scalare, f. Il valore dell'integrale è pari all'area sotto la curva C, tracciata sulla superficie definita da z = f(x,y).
Русский: Иллюстрация криволинейного интеграла первого рода на скалярном поле.
Datum
Quelle Eigenes Werk
Urheber Lucas Vieira
Genehmigung
(Weiternutzung dieser Datei)
Public domain Ich, der Urheberrechtsinhaber dieses Werkes, veröffentliche es als gemeinfrei. Dies gilt weltweit.
In manchen Staaten könnte dies rechtlich nicht möglich sein. Sofern dies der Fall ist:
Ich gewähre jedem das bedingungslose Recht, dieses Werk für jedweden Zweck zu nutzen, es sei denn, Bedingungen sind gesetzlich erforderlich.
Andere Versionen

Auszeichnungen

Abbild of the year
Abbild of the year
Featured Abbild

Wikimedia CommonsWikipedia

Dieses Bild war ein Finalist beim Wettbewerb um das Bild des Jahres 2012.
Dies ist eine exzellente Datei bei Wikimedia Commons (Exzellente Bilder) und wird als eine der hervorragendsten Bild-Dateien gewertet.

 Dies ist eine exzellente Datei in der Wikipedia auf Englisch (Featured pictures) und wird als eine der hervorragendsten Bild-Dateien gewertet.
 Dies ist eine exzellente Datei in der Wikipedia auf Persisch (نگاره‌های برگزیده) und wird als eine der hervorragendsten Bild-Dateien gewertet.

Wenn du ein Bild vergleichbarer Qualität hast, das du unter einer passenden freien Lizenz freigeben kannst, dann lade die Datei hoch, gib ihr eine korrekte Lizenzangabe und nominiere sie!

Full description (English)

A scalar field has a value associated to each point in space. Examples of scalar fields are height, temperature or pressure maps. In a two-dimensional field, the value at each point can be thought of as a height of a surface embedded in three dimensions. The line integral of a curve along this scalar field is equivalent to the area under a curve traced over the surface defined by the field.

In this animation, all these processes are represented step-by-step, directly linking the concept of the line integral over a scalar field to the representation of integrals familiar to students, as the area under a simpler curve. A breakdown of the steps:

  1. The color-coded scalar field f and a curve C are shown. The curve C starts at a and ends at b
  2. The field is rotated in 3D to illustrate how the scalar field describes a surface. The curve C, in blue, is now shown along this surface. This shows how at each point in the curve, a scalar value (the height) can be associated.
  3. The curve is projected onto the plane XY (in gray), giving us the red curve, which is exactly the curve C as seen from above in the beginning. This is red curve is the curve in which the line integral is performed. The distances from the projected curve (red) to the curve along the surface (blue) describes a "curtain" surface (in blue).
  4. The graph is rotated to face the curve from a better angle
  5. The projected curve is rectified (made straight), and the same transformation follows on the blue curve, along the surface. This shows how the line integral is applied to the arc length of the given curve
  6. The graph is rotated so we view the blue surface defined by both curves face on
  7. This final view illustrates the line integral as the familiar integral of a function, whose value is the "signed area" between the X axis (the red curve, now a straight line) and the blue curve (which gives the value of the scalar field at each point). Thus, we conclude that the two integrals are the same, illustrating the concept of a line integral on a scalar field in an intuitive way.

Kurzbeschreibungen

Ergänze eine einzeilige Erklärung, was diese Datei darstellt.

In dieser Datei abgebildete Objekte

Motiv

image/gif

Dateiversionen

Klicke auf einen Zeitpunkt, um diese Version zu laden.

Version vomVorschaubildMaßeBenutzerKommentar
aktuell16:43, 14. Aug. 2012Vorschaubild der Version vom 16:43, 14. Aug. 2012400 × 300 (580 KB)wikimediacommons>LucasVBUnoptimized. Sticking with local palettes for better color resolution per frame. Added bands of color to the field instead of a smooth gradient. Overall, it should look sharper, though the file will be bigger. Worth it, I say!