Drive-by-Wire
Drive-by-Wire (kurz DbW) ist die Bezeichnung für (zumindest partielles) Fahren oder Steuern von Fahrzeugen ohne mechanische Kraftübertragung der Bedienelemente zu den entsprechenden Stellelementen wie etwa Drosselklappen. Das Drive-by-Wire-Konzept umfasst dabei zumindest zwei oder mehr der „X-by-Wire“- Systeme wie etwa Brake-by-Wire (Bremssteuerung) und Steer-by-Wire (Lenkung).
Entsprechend dem Namen bestehen keine mechanischen Verbindungen. Die Steuerung von Funktionen geschieht über elektrische Leitungen und Servomotoren bzw. elektromechanische Aktoren. Es kann zu einem geringeren Kraftstoffverbrauch führen, wenn keine energieintensiven hydraulischen oder mechanischen Systeme betrieben werden müssen.
Die neuere Entwicklung im Kraftfahrzeugbau tendiert dazu, alle Fahrerbefehle nur noch elektrisch weiterzuleiten. Shift-by-Wire-Systeme sind inzwischen in Serie, jedoch erschweren Gesetze die Verwendung rein elektrischer Systeme sowohl für Steer-by-Wire[1] als auch für Brake-by-Wire,[2] daher gibt es zurzeit nur ausgiebige Untersuchungen. Probleme würde bei diesen Systemen beispielsweise ein Ausfall der elektrischen Versorgung bereiten, der zu totaler Unlenkbarkeit oder Bremsversagen führen könnte.
Aus Sicherheitsgründen müssen vor allem die Daten schnell und parallel über mehrere unabhängige Leitungen redundant übertragen werden können. Hier sollte der Übergang zum FlexRay-Bus im Fahrzeug Probleme des CAN-Busses überwinden.
Electronic Power Control
Electronic Power Control (kurz „EPC“), auch als „E-Gas“ oder „elektronisches Gaspedal“ bezeichnet, ist ein Drive-by-Wire-Regelungssystem, das in Kraftfahrzeugen mit Ottomotor den Gasbowdenzug ersetzt.
Funktion und Aufbau
Bei Ottomotoren ohne EPC ist die Drosselklappe, mit der Motordrehzahl und Drehmoment gesteuert werden kann, durch ein Seilzugsystem mit dem Gaspedal verbunden. Bei Fahrzeugen mit EPC wird die Gaspedalstellung durch ein Potentiometer erfasst und der Wert elektronisch an das Motorsteuergerät weitergeleitet. Die Drosselklappe wird durch einen Schrittmotor elektronisch bewegt. Dadurch hat das Gaspedal keinen direkten Durchgriff mehr auf die Drosselklappe, sondern teilt dem Steuergerät nur noch den Fahrwunsch des Fahrers mit.
Das Motorsteuergerät hat dadurch jederzeit uneingeschränkt Einfluss auf die Drosselklappenstellung und damit das Drehmoment des Motors und kann dadurch schneller und genauer auf sich ändernde Bedingungen (wie beispielsweise Notlauf, Abriegelung, Eingriff von ESC, ASR, EDS, Schubbetrieb, Tempomatbetrieb) reagieren. Frühere mechanische Regelungssysteme die durch Änderungen des Einspritz- oder Zündzeitpunktes Einfluss auf Drehmoment des Motors nehmen, können durch das EPC-System ersetzt werden. Ein fehlerhaftes EPC-System wird durch eine Warnleuchte im Kombiinstrument angezeigt. Bei einigen Systemen geht das EPC in einen Notlauf mit permanent erhöhter Drehzahl (z. B. VW und Audi, 1500/min).
Datei:Steer-by-Wire Paravan.webm
Anwendungen
Automobile
Der Honda NSX war ab 1995 der erste Serienwagen, der sowohl elektronische Drosselklappensteuerung (E-Gas, verbunden mit der Regelung von Tempomat und der PGM-FI-Saugrohreinspritzung), als auch eine vollelektronische Servolenkung hatte. Das DBW-System ermöglichte ein schnelleres Ansprechen des Motors auf Gaspedalbefehle und eine exaktere Steuerung der Traktionskontrolle.
Die erste serienmäßige Anwendung eines DBW-Systems wurde 1987 von BMW im E30 in Verbindung mit dessen ab 1987 wählbaren M21 Turbodiesel-Motor pioniert.
Ein Beispiel für den konsequenten Einsatz der Drive-by-Wire-Technik ist das Hybridfahrzeug Toyota Prius.
Auch im Automobil-Rennsport kommen Teillösungen wie Steer-by-Wire zum Einsatz. Ziel ist es, die Technologie unter diesen anspruchsvollen Bedingungen zu testen und weiterzuentwickeln. 2021 starteten vom Unternehmen Paravan ausgerüstete Rennwagen ohne mechanische Lenksäule beim 24-Stunden-Rennen auf dem Nürburgring sowie bei der DTM-Rennsportserie.[3][4]
Motorräder
Zwischenzeitlich geht auch bei Motorrädern der Trend zur elektrischen Übertragung der Fahrsignale. Hier wird jedoch i.d.R von „Ride-by-wire“ gesprochen. Yamaha (YZF-R6 2006) und KTM (690 Duke 2007) brachten die elektronische Drosselklappensteuerung „YCC-T (Yamaha Chip Controlled-Throttle)“ bzw. „EPT (Electronic Power Throttle)“. Hierbei blieb der Gaszug vorhanden und es war bereits möglich, verschiedene Fahrmodi, wie z. B. verhaltenes Ansprechen des Motors bei Regen oder direkte Gasannahme im Sport-Modus, zu realisieren: Yamahas D-Mode (Sport, Town), KTMs MTC (Motorcycle Traction Control)-Mode (Street, Sport, Rain) und Aprilias Tri-Map (Sport, Touring, Regen; siehe: SL 750 Shiver). Erstmals hat dann die 690 Duke 2012, „das erste Motorrad mit einem echten RBW-System“, „die klassische, mechanische Verbindung zwischen dem Gasdrehgriff am rechten Lenkerende und dem Schieber im Vergaser oder dem Drosselklappenkörper zu Grabe [ge]tragen“.[5] Dabei wird die Stellung des Gasgriffes elektronisch erfasst und an den Motor und die Drosselklappen weitergeleitet. Mittlerweile bieten auch andere Modelle und Marken diese Technologie: so die KTM 1190 Adventure (hat zusätzlich „[v]ier verschiedene MTC Modi“: Sport, Street, Rain, Offroad, Off-Mode);[6] ähnlich die zeitgleich präsentierte R 1200 GS von BMW (Rain, Road, Dynamic, Enduro, Enduro Pro).[7]
Behindertengerechte Fahrzeuge
Das Drive-by-Wire-Konzept ist auch relevant für die Kraftfahrzeuganpassung für körperbehinderte Menschen.[8][9] Verschiedene Einbaulösungen ermöglichen es Menschen mit geringen Restkräften, hohem Querschnitt, minimalen Bewegungsfähigkeiten und sogar ohne Arme oder Beine, mit Space Drive 2, Auto zu fahren. Mikroprozessgesteuerte Eingabegeräte machen es möglich Bremse, Gas und Lenkung zu betätigen. Diese Fahrhilfen übertragen die Signale in Nanosekunden an zwei Servomotoren für Bremse und Gas sowie an zwei weitere für das Drive-by-Wire System. Das erste nachträglich verbaute Drive-by-Wire-System mit Straßenzulassung war das Space Drive 2 mit dreifach aktiver Servo-Redundanz des deutschen Unternehmens Paravan GmbH.[10] 2021 rüstete Paravan ein Tesla Model 3 mit Space Drive um. Der Tesla-Prototyp wird mittels Joystick gesteuert und ist das erste in Deutschland zugelassene Auto ohne Lenkrad.[11]
Vorteile
Eine der Hauptverletzungsquellen im Auto, die Lenksäule, fällt durch das Fahren mittels Drive-by-Wire weg. Die komplexe motorische Koordination von Beinen und Armen fällt bei diesem System weg. Zudem ist in einem Auto die Steuerung sowohl von der Fahrer- als auch von der Beifahrerseite ohne Probleme möglich.
Weblinks
- Daimler-Chryslers Drive-by-Wire-System (Memento vom 29. September 2007 im Internet Archive)
- E-Gas am Beispiel eines VW Beetle
- Electronic Power Control - Design and Function, PDF (englisch)
Siehe auch
Literatur
- Fachkunde Kraftfahrzeugtechnik. 29. Auflage. Europa-Lehrmittel, 2009, ISBN 978-3-8085-2239-4.
- Kai Borgeest: Elektronik in der Fahrzeugtechnik. 1. Auflage. Friedr. Vieweg & Sohn Verlag, Wiesbaden 2007, ISBN 978-3-8348-0207-1.
Einzelnachweise
- ↑ § 38 Lenkeinrichtung Abs.(1) StVZO
- ↑ § 41 Bremsen und Unterlegkeile Abs. 1 StVZO
- ↑ M. Zeitler: Mit Space Drive durch die Hölle. In: Auto Bild. Nr. 22, 2. Juni 2021, S. 54.
- ↑ DTM bekommt Steer-by-Wire-Technologie. sport.de, 22. April 2021, abgerufen am 21. Januar 2021.
- ↑ Robert Glück: Kein Zug mehr, sondern Elektronik. In: Motorrad online. 8. Juni 2012. Abgerufen am 5. Juli 2014.
- ↑ MTC (Motorcycle Traction Control). In: KTM-Sportmotorcycle AG. Archiviert vom Original am 4. Juli 2014. Abgerufen am 6. Juli 2014.
- ↑ Fahrmodi. Als Sonderausstattung ab Werk. In: BMW Motorrad International. Archiviert vom Original am 14. Juli 2014. Info: Der Archivlink wurde automatisch eingesetzt und noch nicht geprüft. Bitte prüfe Original- und Archivlink gemäß Anleitung und entferne dann diesen Hinweis. Abgerufen am 5. Juli 2014.
- ↑ Paravan: Space Drive Technik. Abgerufen am 6. September 2012.
- ↑ Joysteer: Drive-by-Wire beim Lenken und Bremsen eines Fahrzeuges. (PDF; 4,6 MB) Archiviert vom Original am 15. Juni 2013; abgerufen am 6. September 2012.
- ↑ Drive-by-Wire inkl. Straßenzulassung – Paravan: Space Drive Technik. Abgerufen am 9. September 2015.
- ↑ Marcus Pfeil: Made in Germany. In: Berliner Zeitung. 22. Mai 2021, S. 23.