Multiplikatives Geschlecht

aus Wikipedia, der freien Enzyklopädie
(Weitergeleitet von Elliptisches Geschlecht)

Ein multiplikatives Geschlecht auch Hirzebruch-Geschlecht[1] ist ein Objekt der Mathematik. Es wird in den Teilgebieten der Differentialtopologie und der algebraischen Topologie untersucht. Als topologische Invariante kann es helfen, Mannigfaltigkeiten, die nicht zueinander äquivalent (homeomorph) sind, zu unterscheiden.

In den späten 1950er Jahren entwickelte Friedrich Hirzebruch eine Methode, bei der er multiplikative Geschlechter mittels multiplikativer Folgen[2] (auch multiplikative Sequenzen[3]) definierte. Zu diesen Geschlechtern, die durch multiplikative Folgen definiert werden können, gehören das Todd-Geschlecht, das Â-Geschlecht, das L-Geschlecht und die Klasse der elliptischen Geschlechter. Diese Objekte sind zentral bei der Definition des topologischen Index für den Atiyah-Singer-Indexsatz. Für das L-Geschlecht bewies Hirzebruch in seinem Signatursatz, dass es mit der Signatur der Mannigfaltigkeit übereinstimmt.

Multiplikatives Geschlecht

Ein multiplikatives Geschlecht ist eine Abbildung , die jeder geschlossenen orientierten glatten Mannigfaltigkeit der Dimension ein Element aus einem Integritätsring zuordnet, so dass für je zwei solcher Mannigfaltigkeiten und die drei Bedingungen

  • , wobei die disjunkte Vereinigung ist,
  • , falls es eine kompakte orientierte Mannigfaltigkeit der Dimension gibt mit

erfüllt sind. Ein multiplikatives Geschlecht kann also (äquivalent) als ein Ringhomomorphismus (der auch das Eins-Element beachtet) vom Kobordismusring nach verstanden werden. Oftmals wird als Integritätsring die Menge der rationalen Zahlen verwendet.

Multiplikative Folge

Sei eine formale Potenzreihe mit rationalen Koeffizienten und konstantem Term und sei eine positive ganze Zahl. Die formale Potenzreihe ist dann symmetrisch. Daher existieren Polynome , so dass

gilt, wobei

das k-te elementarsymmetrische Polynom bezeichnet. Die Folge von Polynomen heißt multiplikative Folge oder multiplikative Sequenz bezüglich der formalen Potenzreihe .[4]

Geschlecht einer multiplikativen Folge

In diesem Abschnitt wird das Geschlecht einer Mannigfaltigkeit bezüglich einer multiplikativen Folge definiert. Dieses Geschlecht ist ein multiplikatives Geschlecht im obigen Sinn.[5] Die Definition geschieht getrennt nach glatten beziehungsweise komplexen Mannigfaltigkeiten. Jedoch sind beide Definitionen ähnlich.

Für glatte Mannigfaltigkeiten

Sei eine orientierte glatte -dimensionale Mannigfaltigkeit, ihr Tangentialbündel, das ein reelles Vektorbündel ist, und eine multiplikative Folge zu der formalen Potenzreihe . Dann ist das multiplikative Geschlecht von definiert durch

,

falls ist und sonst durch . Dabei bezeichnet die -te Pontrjagin-Klasse von , die Fundamentalklasse von und die natürliche Paarung zwischen Homologie und Kohomologie.[6][7]

Für komplexe Mannigfaltigkeiten

Sei eine orientierte komplexe Mannigfaltigkeit mit , sei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle TX} ihr Tangentialbündel, das ein komplexes Vektorbündel ist, und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (F_k)} eine multiplikative Folge zu der formalen Potenzreihe Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f} . Dann ist das multiplikative Geschlecht von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X} definiert durch

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle F(E) := \langle F_k(c_1, \ldots , c_k),[X] \rangle} ,

falls Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n = 2k} ist und sonst durch Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle F(E) = 0} . Dabei bezeichnet Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle c_i} die Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle i} -te Chern-Klasse von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle TX} , Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle [X]} die Fundamentalklasse von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \langle \cdot,\cdot \rangle} die natürliche Paarung zwischen Homologie und Kohomologie.[8]

Besondere multiplikative Geschlechter

In diesem Abschnitt werden spezielle, zentrale multiplikative Geschlechter angeführt.

Todd-Geschlecht

Die durch die (formale) Potenzreihe

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \frac{z}{1-\exp(-z)} = 1 + \frac{1}{2}z+ \sum_{i=1}^\infty (-1)^{i+1}\frac{B_{2i}}{(2i)!}z^{2i} } ,

wobei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle B_{2i}} die Bernoulli-Zahlen sind, definierte multiplikative Folge Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (\operatorname{Td}_i)} , heißt Todd-Folge. Die ersten Terme der Folge mit Koeffizienten in den Chern-Klassen lauten:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \begin{align} \operatorname{Td}_0 &= 1\\ \operatorname{Td}_1(c_1) &= c_1/2\\ \operatorname{Td}_2(c_1,c_2) &= (c_2 + c_1^2)/12\\ \operatorname{Td}_3(c_1,c_2,c_3) &= (c_1c_2)/24\,. \end{align}}

Die totale Todd-Klasse Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathbf{Td}_\Complex} ist dann gegeben durch

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathbf{Td}_\Complex(E) = \sum_{i} \operatorname{Td}_i(c_1, \cdots, c_i)} .

Für eine kompakte komplexe Mannigfaltigkeit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X} der (reellen) Dimension Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 2n} ist das Todd-Geschlecht definiert durch[8]

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \operatorname{Td}(X) := \langle \operatorname{Td}_n(TX),[X] \rangle} .

Â-Geschlecht

Die durch die (formale) Potenzreihe

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \hat{a}(x) = \frac{\frac{\sqrt{x}}{2}}{\sinh\left(\frac{\sqrt{x}}{2} \right)} = 1 - \frac{1}{24} x + \frac{7}{2^7 \cdot 3^2 \cdot 5} x^2 + \cdots}

definierte multiplikative Folge Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (\hat{A}_i)} , heißt Â-Folge (gesprochen: A-Dach-Folge). Die ersten Terme der Folge mit Koeffizienten in den Pontrjagin-Klassen sind:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \begin{align} \hat{A}_0 &= 1\\ \hat{A}_1(p_1) &= - \frac{p_1}{24}\\ \hat{A}_2(p_1,p_2) &= \frac{1}{2^7 \cdot 3^2 \cdot 5} (-4 p_2 + 7p_1^2)\\ \hat{A}_3(p_1,p_2,p_3) &= \frac{1}{2^{10} \cdot 3^3 \cdot 5 \cdot 7}(16p_3 - 44p_2p_1 + 31p_1^3)\,. \end{align}}

Die Â-Klasse Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathbf{\hat{A}}} ist dann definiert durch

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathbf{\hat{A}}(E) = \sum_{i} \hat{A}_i(p_1, \cdots, p_i)} .

Die Â-Klasse ist das reelle Analogon der Todd-Klasse. Für jedes orientierte reelle Vektorbündel Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle E} gilt nämlich Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathbf{Td}_\Complex(E) = \mathbf{\hat{A}}(E)^2} . Das Â-Geschlecht Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \hat{A}} ist genauso wie zuvor das Todd-Geschlecht definiert als die Â-Klasse gepaart mit der Fundamentalklasse.[9]

L-Geschlecht

Die durch die (formale) Potenzreihe

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle L(x) = \frac{\sqrt{x}}{\tanh\left(\sqrt{x}\right)} = \sum_{k\ge 0} {2^{2k}B_{2k}x^k\over (2k)!} = 1 + {x \over 3} - {x^2 \over 45} +\cdots } ,

wobei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle B_{2i}} die Bernoulli-Zahlen sind, definierte multiplikative Folge Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (L_i)} , heißt Folge der L-Polynome. Die ersten Terme der Folge mit Koeffizienten in den Pontrjagin-Klassen sind:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \begin{align} L_0 &= 1\\ L_1(p_1) &= \frac{p_1}{3}\\ L_2(p_1,p_2) &= \frac{1}{45}(7p_2 - p_1^2)\\ L_3(p_1,p_2,p_3) &= \frac{1}{945}(62 p_3-13 p_1 p_2+2 p_1^3)\\ L_4(p_1,p_2,p_3,p_4) &= \frac{1}{14175} (381 p_4-71 p_1 p_3-19 p_2^2+22 p_1^2 p_2-3 p_1^4)\,. \end{align}}

Für eine kompakte komplexe Mannigfaltigkeit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X} der Dimension Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 4 n} ist das L-Geschlecht ebenfalls gegeben durch

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle L(X) := \langle L_n(TX),[X] \rangle} .

Hirzebruch bewies mit dem Signatursatz, dass das L-Geschlecht mit der Signatur der Mannigfaltigkeit übereinstimmt.[10]

Elliptisches Geschlecht

Ein multiplikatives Geschlecht wird elliptisches Geschlecht genannt, falls die formale Potenzreihe Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle Q(z) = \tfrac{z}{f(z)}} die Differentialgleichung

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle {f'}^2 = 1 - 2\delta f^2 + \epsilon f^4}

mit Konstanten Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \delta} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \epsilon} erfüllt.

Eine explizite Darstellung von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f} ist

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f(z) =\frac{{\rm sn} \left( az,{\frac {\sqrt {\epsilon}} {{a}^{2}}} \right)} {a}} ,

wobei

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a=\sqrt{\delta+\sqrt {{\delta}^{2}-\epsilon}}}

und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \operatorname{sn}} die Jacobische elliptische Funktion ist. Also ist der Logarithmus des multiplikativen Geschlechts das elliptische Integral erster Art

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \log(\phi)(z) = \int_0^z \frac{\mathrm{d} t}{\sqrt{1 - 2\delta f^2 + \epsilon f^4}}} .

Dieses wurde in der ersten Definition des elliptischen Geschlechtes genutzt wurde und daher heute auch das Attribut elliptisch im Namen trägt.[11] Gilt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \delta^2 = \epsilon} oder Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \epsilon = 0} , dann nennt man das entsprechende elliptische Geschlecht degeneriert.

Setzt man beispielsweise Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \delta = \epsilon = 1} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f(z) = \tanh(z)} , so erhält man das L-Geschlecht. Das Â-Geschlecht erhält man, wenn man Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \delta = -1/8,\ \epsilon = 0} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f(z) = 2\sinh(z/2)} .[12]

Weblinks

Einzelnachweise

  1. Sergeĭ Petrovich Novikov: Topics in Topology and Mathematical Physics. American Mathematical Soc., 1995, ISBN 978-0-8218-0455-1, S. 25 (google.com).
  2. Ruedi Seiler, Volker Enss, Werner Müller: Geometrie und Physik (Akademie der Wissenschaften Zu Berlin. Forschungsberichte). De Gruyter, 1997, ISBN 978-3110139440, S. 170.
  3. Matthias Kreck: Eine invariante für stabil parallelisierte Mannigfaltigkeiten. Dissertation. (Online)
  4. H. B. Lawson, M. Michelson: Spin Geometry. Princeton University Press, 1989, ISBN 978-0691085425, S. 228–229.
  5. Charles B. Thomas: Elliptic Cohomology (University Series in Mathematics). Springer, 1999, ISBN 978-0-306-46097-5, S. 10.
  6. H. B. Lawson, M. Michelson: Spin Geometry. Princeton University Press, 1989, ISBN 978-0691085425, S. 230–231.
  7. Friedrich Hirzebruch: Topological methods in algebraic geometry (Grundlehren der mathematischen Wissenschaften 131). 2nd corrected printing of the 3rd edition. Springer, Berlin u. a. 1978, ISBN 3-540-03525-7, S. 77.
  8. a b H. B. Lawson, M. Michelson: Spin Geometry. Princeton University Press, 1989, ISBN 978-0691085425, S. 230.
  9. H. B. Lawson, M. Michelson: Spin Geometry. Princeton University Press, 1989, ISBN 978-0691085425, S. 231–232.
  10. John W. Milnor, James D. Stasheff: Characteristic classes. Princeton, N.J., Princeton University Press, ISBN 0691081220, 224.
  11. S. Ochanine, "Sur les genres multiplicatifs définis par des intégrales elliptiques" Topology , 26 (1987) pp. 143–151 MR0895567 Zbl 0626.57014
  12. Serge Ochanine, What is… an elliptic genus?, Notices of the AMS, volume 56, number 6 (2009) (Online)