Ext (Mathematik)

aus Wikipedia, der freien Enzyklopädie
(Weitergeleitet von Ext-Funktor)

Ext ist ein Bifunktor, der in der homologischen Algebra eine zentrale Rolle spielt.

Definition

Sei eine abelsche Kategorie, zum Beispiel die Kategorie der Moduln eines Ringes, die nach dem Einbettungssatz von Mitchell das Standardbeispiel ist. Zu zwei Objekten und aus sei die Klasse der kurzen exakten Sequenzen der Form

Auf wird nun eine Äquivalenzrelation definiert. Zwei exakte Sequenzen und sind äquivalent, wenn es einen Morphismus gibt, so dass das Diagramm

kommutiert. Dabei ist der identische Morphismus.

Aus dem Fünferlemma folgt sofort, dass wenn es solch einen Morphismus gibt, dieser ein Isomorphismus sein muss. Die Klasse modulo dieser Äquivalenzrelation ist eine Menge und wird mit bezeichnet. Auf dieser Menge lässt sich eine Gruppenstruktur definieren.[1][2]

Funktorialität

Morphismen in der abelschen Kategorie induzieren auf folgende Weise Morphismen zwischen den Ext-Gruppen, so dass zu einem zweistelligen Funktor wird.

Zu und der Sequenz kann man den Push-out bilden:

Wegen der universellen Eigenschaft des Push-outs gibt es einen induzierten Epimorphismus von Y' nach Z, so dass das folgende Diagramm kommutiert:

Dabei ist die untere Zeile ebenfalls exakt und ihre Äquivalenzklasse somit ein Element in .

Bildet man die Äquivalenzklasse von auf die Äquivalenzklasse von ab, so erhält man einen wohldefinierten Gruppenhomomorphismus Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathrm{Ext}(Z,X)\rightarrow \mathrm{Ext}(Z,X')} .

Dual funktioniert das auch mit Morphismen von Z' nach Z. Zu Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle g \colon Z'\to Z} und der Sequenz Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 0\rightarrow X\rightarrow Y\rightarrow Z\rightarrow 0} kann man folgenden Pull-back bilden:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \begin{matrix} & & & & Y' & \to & Z' & \to & 0\\ & & && \downarrow && \downarrow g\\ 0 & \to & X & \to & Y & \to & Z & \to & 0 \end{matrix}. }

Wegen der universellen Eigenschaft des Pull-backs gibt es einen induzierten Monomorphismus von X nach Y', so dass das folgende Diagramm kommutiert:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \begin{matrix} 0 & \to & X & \to & Y' & \to & Z' & \to & 0\\ & & \downarrow \operatorname{id} && \downarrow && \downarrow g \\ 0 & \to & X & \to & Y & \to & Z & \to & 0 \end{matrix} }

Dabei ist die obere Zeile ebenfalls exakt und definiert somit ein Element in Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathrm{Ext}(Z',X)} .

Bildet man die Äquivalenzklasse von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 0\rightarrow X\rightarrow Y\rightarrow Z\rightarrow 0} auf die Äquivalenzklasse von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 0\rightarrow X\rightarrow Y'\rightarrow Z'\rightarrow 0} ab, so erhält man wieder einen wohldefinierten Gruppenhomomorphismus Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathrm{Ext}(Z,X)\rightarrow \mathrm{Ext}(Z',X)} .

Ext als Ableitung des Hom-Funktors

Eine andere Möglichkeit der Definition verwendet die abgeleiteten Funktoren von Hom. Die oben definierte Konstruktion kann mit der ersten Rechtsableitung des Hom-Funktors identifiziert werden.

Genauer betrachtet man eine abelsche Kategorie mit ausreichend vielen projektiven Objekten (d. h. jedes Objekt ist Quotient eines projektiven Objektes) den kontravarianten Funktor Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathrm{Hom}(-,X)} und definiert

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathrm{Ext}^n(Z,X) := R_n\mathrm{Hom}(-,X)(Z)} ,

das heißt man bildet die Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n} -te Rechtsableitung von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathrm{Hom}(-,X)} und wendet den so entstandenen Funktor auf Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle Z} an.

Etwas konkreter bedeutet das folgendes: Es sei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n\ge 1} und

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \begin{array}{ccccc} \ldots \rightarrow & P_n & \rightarrow & P_{n-1} & \rightarrow \ldots \rightarrow Z \rightarrow 0 \\ & \lambda_n \downarrow & \nearrow \kappa_n \\ & K_n \end{array}}

eine projektive Auflösung von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle Z} mit einem Epimorphismus Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \lambda_n:P_n\rightarrow K_n} und einem Monomorphismus Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \kappa_n:K_n \rightarrow P_{n-1}} , so dass Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (P_n \rightarrow P_{n-1}) = \kappa_n\circ \lambda_n} . Weiter sei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \kappa_n^* = \mathrm{Hom}(\kappa_n,X)} der induzierte Homomorphismus

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \kappa_n^*: \mathrm{Hom}(P_{n-1},X)\rightarrow \mathrm{Hom}(K_n,X),\, f\mapsto f\circ \kappa_n} .

Dann ist

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathrm{Ext}^n(Z,X) \cong \mathrm{coker}(\kappa_n^*) = \mathrm{Hom}(K_n,X)/\kappa_n^*( \mathrm{Hom}(P_{n-1},X))} .

Die Elemente aus Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathrm{Ext}^n(Z,X)} sind also gewisse Äquivalenzklassen von Elementen aus Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathrm{Hom}(K_n,X)} .[3]

Schließlich sei darauf hingewiesen, dass man die Rollen von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle Z} auch vertauschen kann, man erhält

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathrm{Ext}^n(Z,X) \cong R_n\mathrm{Hom}(Z,-)(X)} .

Zusammenhang zwischen Ext und Ext1

In diesem Abschnitt soll erläutert werden, wie die oben definierten Konstrukte Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathrm{Ext}} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathrm{Ext}^1} zusammenhängen. Wir konstruieren eine Abbildung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathrm{Ext}(Z,X) \rightarrow \mathrm{Ext}^1(Z,X)} .

Sei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 0 \rightarrow X \rightarrow Y \rightarrow Z \rightarrow 0} eine kurze exakte Sequenz, die ein Element aus Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathrm{Ext}(Z,X)} definiert. Weiter sei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 0 \rightarrow K \rightarrow P \rightarrow Z \rightarrow 0} eine kurze exakte Sequenz mit projektivem Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle P} . Mittels der Projektivität von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle P} kann man ein kommutatives Diagramm

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \begin{array}{ccccccc} 0 \rightarrow & K & \rightarrow & P & \rightarrow & Z & \rightarrow 0 \\ & \downarrow \psi & & \downarrow \varphi & & \Vert \\ 0 \rightarrow & X & \rightarrow & Y & \rightarrow & Z & \rightarrow 0 \end{array}}

konstruieren. Dann ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \psi \in \mathrm{Hom}(K,X)} ein Homomorphismus, dessen Äquivalenzklasse nach obiger Darstellung von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathrm{Ext}^n(Z,X)} ein Element aus Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathrm{Ext}^1(Z,X)} definiert.

Bildet man die Äquivalenzklasse von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 0 \rightarrow X \rightarrow Y \rightarrow Z \rightarrow 0} in Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathrm{Ext}(Z,X)} auf die Äquivalenzklasse von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \psi} in Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathrm{Ext}^1(Z,X)} ab, so erhält man eine wohldefinierte Abbildung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathrm{Ext}(Z,X) \rightarrow \mathrm{Ext}^1(Z,X)} , von der man zeigen kann, dass es sich um einen Gruppenisomorphismus handelt.[4]

Daher kann man Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathrm{Ext}} mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathrm{Ext}^1} identifizieren, das heißt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathrm{Ext}} kann in diesem Sinne als erste Rechtsableitung des Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathrm{Hom}} -Funktors definiert werden.

Lange exakte Sequenz

Der Hom-Funktor ist linksexakt, das heißt für eine kurze exakte Sequenz

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 0\rightarrow X\rightarrow Y\rightarrow Z\rightarrow 0}

und ein weiteres Objekt (Modul) Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A} hat man eine exakte Sequenz

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 0\rightarrow \mathrm{Hom}(A,X) \rightarrow \mathrm{Hom}(A,Y) \rightarrow \mathrm{Hom}(A,Z)} ,

und diese lässt sich im Allgemeinen nicht exakt mit 0 fortsetzen. Wegen der Linksexaktheit stimmt die 0-te Ableitung des Hom-Funktors mit Hom überein, das heißt, wenn man obige Definition von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathrm{Ext}^n} auf Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n=0} ausdehnt, so hat man Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathrm{Ext}^0 = \mathrm{Hom}} . Die lange exakte Sequenz für abgeleitete additive Funktoren liefert daher die folgende exakte Sequenz

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 0\rightarrow \mathrm{Hom}(A,X) \rightarrow \mathrm{Hom}(A,Y) \rightarrow \mathrm{Hom}(A,Z) }
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \rightarrow \mathrm{Ext}^1(A,X) \rightarrow \mathrm{Ext}^1(A,Y) \rightarrow \mathrm{Ext}^1(A,Z) \rightarrow \mathrm{Ext}^2(A,X) \rightarrow \ldots} .

Analog erhält man eine lange exakte Sequenz

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 0\rightarrow \mathrm{Hom}(Z,A) \rightarrow \mathrm{Hom}(Y,A) \rightarrow \mathrm{Hom}(X,A) }
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \rightarrow \mathrm{Ext}^1(Z,A) \rightarrow \mathrm{Ext}^1(Y,A) \rightarrow \mathrm{Ext}^1(X,A) \rightarrow \mathrm{Ext}^2(Z,A) \rightarrow \ldots} .

In diesem Sinne schließen die Ext-Funktoren die durch die fehlende Exaktheit des Hom-Funktors entstandene Lücke.[5]

Einzelnachweise

  1. Sergei I. Gelfand & Yuri Ivanovich Manin: Homological Algebra, Springer, Berlin, 1999, ISBN 978-3-540-65378-3
  2. Charles A. Weibel: An introduction to homological algebra, Cambridge Studies in Advanced Mathematics, 38, Cambridge University Press, 1999, ISBN 978-0-521-55987-4
  3. Peter Hilton: Lectures in Homological Algebra, American Mathematical Society (2005), ISBN 0-8218-3872-5, Satz 3.13
  4. Peter Hilton: Lectures in Homological Algebra, American Mathematical Society (2005), ISBN 0-8218-3872-5, Theorem 4.5
  5. Saunders Mac Lane: Homology, Springer Grundlehren der mathematischen Wissenschaften Band 114 (1967), Kap. III, Theorem 3.4 und Theorem 9.1