Prinzip des kleinsten Zwanges
Prinzip des kleinsten Zwanges (auch gaußsches Prinzip des kleinsten Zwanges) ist ein von Carl Friedrich Gauß 1829 aufgestellter und von Philip Jourdain ergänzter Satz der klassischen Mechanik, wonach ein mechanisches System sich so bewegt, dass der Zwang zu jedem Zeitpunkt minimiert wird.
Der Zwang ist dabei definiert als[1]:
wobei über die Massenpunkte i summiert wird, mit den vorgegebenen eingeprägten Kräften , den Massen der Punktteilchen und den Beschleunigungen . Die einzelnen Punktteilchen, aus denen man sich das System zusammengesetzt denkt, sind dabei zusätzlichen Zwangsbedingungen unterworfen. Die eingeprägten Kräfte dürfen explizit von der Zeit, vom Ort und der Geschwindigkeit abhängen, nicht jedoch von der Beschleunigung.
Bei der Minimierung des Zwanges bezüglich der Beschleunigungen stehen alle mit den Zwangsbedingungen verträglichen Bewegungen zur Konkurrenz, bei denen zur Zeit die Lagen und die Geschwindigkeiten übereinstimmen. Konkurrenz bedeutet, dass alle möglichen Bewegungen betrachtet werden – auch die, die wegen des Prinzip des kleinsten Zwanges in der Realität gar nicht auftreten.
In der obigen Gleichung stehen die Differenzen zwischen den Beschleunigungen der Massenelemente und den Beschleunigungen, die sie als freie Massen unter der Einwirkung der an ihnen angreifenden eingeprägten Kräfte erfahren würden. Das Prinzip lässt sich damit wie folgt formulieren:
bzw.
- ,
mit (nur die Beschleunigung wird variiert).
Das Prinzip des kleinsten Zwangs ist für sehr allgemein formulierte Zwangsbedingungen gültig. In diese können die Zeit, die Orte und Geschwindigkeiten nichtlinear eingehen. Dadurch grenzt sich das Prinzip des kleinsten Zwangs zum Beispiel vom d'Alembert'schen Prinzip der virtuellen Arbeit ab, bei dem in der einfachsten Fassung holonome Zwangsbedingungen gefordert werden. Cornelius Lanczos[2] nennt es eine geniale Neuinterpretation des d'Alembertschen Prinzips der Mechanik durch Carl Friedrich Gauß, der damit eine Formulierung der mechanischen Prinzipien gefunden hatte, die in der Form seiner Methode der kleinsten Quadrate eng verwandt war.
Beispiel
Gegeben ist ein Pendel mit 2 Punktmassen und masseloser starrer Stange (s. Abbildung 1). Die Kräfte Fe1 und Fe2 sind die eingeprägten Kräfte mit den Beträgen m1g und m2g. at1 und at2 sind die Tangentialbeschleunigungen der Massen m1 und m2, an1 und an2 die zugehörigen Normalbeschleunigungen. Der Zwang ist damit:
Bei der Bestimmung des Minimums für obigen Ausdruck ist zu beachten, dass die Variation der Normalbeschleunigungen wegen der gelenkigen Aufhängung verschwindet, während für die Tangentialbeschleunigungen gilt:
und
Somit wird
Wegen der Willkürlichkeit von folgt nach Kürzung des Faktors 2 die Bewegungsgleichung:
Eine formale Interpretation
Im Folgenden wird eine Interpretation des gaußschen Prinzips für ein allgemeines Punktmassensystem mit Zwangsbedingungen gegeben.
Systembeschreibung
Punktmassen mit Koordinaten bewegen sich unter Einfluss eingeprägter Kräfte, die von der Zeit, Ort und Geschwindigkeiten abhängen.
Die Bewegung des freien Systems wird durch die Gleichung
beschrieben ( ist die Massenmatrix), wobei nun der Ort als zeitabhängige Funktion zu interpretieren ist und die erste bzw. zweite Zeitableitung sind.
Bei dem zu untersuchenden System sind jedoch zusätzliche Zwangsbedingungen gegeben , die durch die Gleichung
mit einer vektorwertigen Funktion beschrieben werden.
Mit Hilfe des gaußschen Prinzips soll die Bewegungsgleichung des Systems mit Zwangsbedingungen aufgestellt werden, die an die Stelle der Bewegungsgleichung für das freie System tritt.
Interpretation des gaußschen Prinzips
Das oben verbal formulierte gaußsche Prinzip stellt nicht nur eine Optimierungsaufgabe dar, sondern eine ganze Familie durch die Zeit parametrisierter Optimierungsaufgaben, denn der Zwang soll zu jedem Zeitpunkt ein Minimum annehmen (das ist einer der feinen Unterschiede des gaußschen Prinzips zum Prinzip der stationären Wirkung, bei dem die Wirkung ein von der gesamten Bewegung abhängiges Funktional ist).
Zu jedem festen Zeitpunkt konkurrieren alle zweimal stetig im Kurvenparameter Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \tau} differenzierbaren Kurven
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \tau\mapsto x(t,\tau)\in \mathbb{R}^{3n} }
die die Zwangsbedingung
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle G(\tau,x(t,\tau),\partial_\tau x(t,\tau) ) = 0 }
erfüllen, an der Stelle Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \tau=t} durch denselben Ort
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \left.x(t,\tau)\right|_{\tau=t} = x(t) }
gehen und dieselbe Geschwindigkeit
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \left.\partial_\tau x(t,\tau)\right|_{\tau=t} = \dot x(t) }
haben um das Zwangsminimum.
Zum Aufstellen einer Gleichung für die den Zwang minimierende Bewegung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x} wird eine im Abschnitt „Ein Hilfsmittel aus der Analysis reeller Funktionen in einer reellen Veränderlichen“ des Eintrages zur Variationsrechnung vorgestellte Methode verwendet.
Aus der Menge aller konkurrierender Kurven wird eine beliebige reell-parametrige Schar Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \{\tau\mapsto x(t,\tau,\alpha)\}_{\alpha}} herausgegriffen, die nach dem Scharparameter Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \alpha} differenzierbar sei. Die Kurve für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \alpha=0} , also Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \tau\mapsto x(t,\tau,0)} , soll gerade mit der physikalisch ausgezeichneten Bewegung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle t\mapsto x(t)} übereinstimmen. Das heißt, dass zu jeder Zeit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle t} der vom Scharparameter Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \alpha} abhängigen Zwang
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle Z(t,\alpha) := \left.\left(\partial_\tau^2 x(t,\tau,\alpha) - M^{-1} F\right)^T M\left(\partial_\tau^2 x(t,\tau,\alpha) - M^{-1} F\right)\right|_{\tau=t} }
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle = \left.\left(\sqrt M\left(\partial_\tau^2 x(t,\tau,\alpha) - M^{-1} F) \right)\right)^2\right|_{\tau=t} }
an der Stelle Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \alpha=0} ein Minimum annimmt (die zweite Darstellung dient im Wesentlichen einer übersichtlicheren Notation). Hält man die Zeit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle t} fest, so ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \alpha\mapsto Z(t,\alpha)} nur noch von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \alpha} abhängig. Eine notwendige Bedingung dafür, dass diese Funktion bei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \alpha=0} ein Minimum annimmt, ist, dass die Ableitung des Zwangs nach Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \alpha} bei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \alpha=0} gleich null wird, also
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \left.\partial_\alpha Z(t,\alpha)\right|_{\alpha=0} = 0. }
Berücksichtigt man, dass diese Gleichung für jede beliebige gemäß den obigen Voraussetzungen gewählte Kurvenschar Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \left\{x(t,\tau,\alpha)\right\}_{\alpha}} gelten muss, erhält man daraus die Bewegungsgleichung für das System mit den vorgegebenen Zwangsbedingungen.
Das wird im nächsten Abschnitt weiter ausgeführt.
Übergang zum jourdainschen Prinzip und zur lagrangeschen Darstellung
Entsprechend der eben skizzierten Vorgehensweise werden nun die Bewegungsgleichungen in einer der Berechnung besser zugänglichen Form aufgestellt. Das dadurch entstehende Gleichungssystem wird auch als jourdainsches Prinzip oder Prinzip der virtuellen Leistung interpretiert.
Zunächst führt man die Differentiation nach Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \alpha} in der letzten abgesetzten Gleichung weiter aus.
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \left.\partial_\alpha Z(t,\alpha)\right|_{\alpha=0} = 2\left(\partial_\tau^2 x(t,\tau,0) - M^{-1} F(\,t,x(t,\tau,\alpha),\partial_\tau x(t,\tau,\alpha)\,) \right)^{T} M\, \partial_{\alpha} \left.\partial_{\tau}^2 x(t,\tau,\alpha)\right|_{\alpha=0,\tau=t} }
Hierbei wurde benutzt, dass viele Terme der inneren Ableitung wegen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \partial_\alpha x(t,\tau,\alpha)|_{\tau=t}=0} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \partial_\alpha \partial_\tau x(t,\tau,\alpha)|_{\tau=t}=0} gleich null sind.
Um zu verdeutlichen, dass in der Klammer die linke Seite der Kräftebilanz für das freie System steht, wird noch die Massenmatrix Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle M} in die Klammer hinein gezogen.
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \left.\partial_\alpha Z(t,\alpha)\right|_{\alpha=0} = 2\left(M\partial_\tau^2 x(t,\tau,\alpha) - F(\,t,x(t,\tau,\alpha),\partial_\tau x(t,\tau,\alpha)\,) \right)^{T} \partial_{\alpha} \left.\partial_{\tau}^2 x(t,\tau,\alpha)\right|_{\alpha=0,\tau=t} }
Die mit den Zwangsbedingungen verträglichen Variationen der Beschleunigung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \partial_{\alpha} \left.\partial_{\tau}^2 x(t,\tau,\alpha)\right|_{\alpha=0,\tau=t}} erhält man durch Ableitung der Zwangsbedingung
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle G(\tau,x(t,\tau, \alpha),\partial_\tau x(t,\tau, \alpha) ) = 0 }
nach Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \tau} an der Stelle Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \tau=t} und dann nach Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \alpha} .
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 0=\left.\partial_{\tau} G(\tau,x(t,\tau, \alpha),\partial_\tau x(t,\tau, \alpha) ) \right|_{\tau=t} }
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle =\left[\partial_1 G + \partial_2 G \partial_\tau x + \partial_3 G \partial_\tau^2 x \right]_{\tau=t} }
Hier wurden der Übersicht halber die Argumente weggelassen und mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \partial_i} die partiellen Ableitungen nach Zeit (i=1), Ort (i=2) und Geschwindigkeit (i=3) bezeichnet. Bei der anschließenden Differentiation nach Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \alpha} nutzt man wieder aus, dass für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \tau=t} die Variationen von Ort und Geschwindigkeit gleich null sind und erhält die gewünschte Bedingung dafür, dass Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \partial_\alpha\partial_\tau^2 x|_{\alpha=0,\tau=t}} mit den Zwangsbedingungen verträglich ist:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \left.\partial_3 G(t,x(t,t,0),\partial_\tau x(t,\tau,0)\right|_{\tau=t}) \left.\partial_\alpha\partial_\tau^2 x\right|_{\alpha=0,\tau=t} = 0 }
Führt man in der letzten Gleichung und in der letzten Gleichung für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \left.\partial_\alpha Z(t,\alpha)\right|_{\alpha=0}=0} für die Variation der Beschleunigung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \partial_\alpha\partial_\tau^2 x|_{\alpha=0,\tau=t}} das Zeichen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \delta v} ein und substituiert man (korrekterweise) Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x(t,\tau, \alpha)|_{\alpha=0,\tau=t} = x(t)} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \partial_\tau x(t,\tau, \alpha)|_{\alpha=0,\tau=t} = \dot x(t)} , so erhält man letztendlich aus dem gaußschen Prinzip die übliche Schreibweise für das jourdainsche Prinzip der virtuellen Leistung:
Die physikalisch ausgezeichnete Bewegung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle t\mapsto x(t)} verläuft gerade so, dass zu jedem Zeitpunkt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle t} die Gleichung
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \left(M \ddot x(t) - F(\,t,x(t),\dot x(t)\,) \right)^{T} \delta v=0 }
für alle Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \delta v\in\mathbb{R}^{3n}} mit
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \partial_3 G(t,x(t),\dot x(t)) \delta v = A \delta v = 0 }
erfüllt ist.
Das kann so interpretiert werden, dass zumindest in den Richtungen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \delta v} , in denen sich das System momentan frei bewegen kann, das System mit Zwangsbedingungen auch die Bewegungsgleichungen des freien Systems erfüllen muss.
Die Größen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \delta v} werden als virtuelle Geschwindigkeiten bezeichnet.
Für eine effektivere Berechnung kann man das vorstehende Gleichungssystem wie folgt in die lagrangesche Darstellung (Lagrangegleichung 1. Art) überführen, die auch zum d´Alembert Prinzip äquivalent ist.
Mit der zweiten Gleichung wird ausgedrückt, dass die Menge aller zulässigen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \delta v} gerade der Kern der Matrix Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A = \partial_3 G(t,x(t),\dot x(t))} ist und die erste Gleichung besagt, dass Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \left(M \ddot x(t) - F(\,t,x(t),\dot x(t)\,) \right)} im orthogonalen Komplement dieser Menge liegt. Insgesamt erhält man also Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \left(M \ddot x(t) - F(\,t,x(t),\dot x(t)\,) \right) \in \left(\operatorname{Kern}\, A \right)^{\perp} = \operatorname{Bild}\,A^T }
Denn aus Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \,A \vec x =0} folgt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \,{\vec y}^T A \vec x = {(A^T \vec y)}^T \vec x = 0} . Es gibt also einen (zeitabhängigen) Vektor Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \lambda(t)\in\mathbb{R}^z} (der Lagrange-Multiplikator), mit dem
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle M \ddot x(t) - F(\,t,x(t),\dot x(t)\,) = A^T \lambda(t) }
gilt (Lagrangegleichungen 1. Art).
Eine Interpretation dafür ist, dass senkrecht zu den möglichen virtuellen Geschwindigkeiten Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \delta v} beliebige Zwangskräfte Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \,A^T \lambda(t)} wirken können.
Explizite Ableitung des d'Alembert Prinzips
Holonome Zwangsbedingungen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \,C(t,x(t)) = 0} , in denen die Geschwindigkeiten nicht explizit vorkommen, können in die bisherige Behandlung einbezogen werden, indem man setzt:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle G(t,x(t),\dot x(t)) := \frac{\mathrm d}{\mathrm{d}t} C(t,x(t)) = \partial_1 C(t,x(t)) + \partial_2 C(t,x(t))\,\dot x(t) = 0 }
Aus der Anschauung ist klar, dass die Zwangsbedingung für den Ort, die das System in eine bestimmte Bahn zwingt, auch die möglichen Geschwindigkeiten einschränkt. Es ergibt sich im jourdainschen Prinzip:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \partial_3 G(t,x(t),\dot x(t))\delta v = \partial_2 C(t,x(t)) \delta v = 0}
Da danach die Variation der Geschwindigkeiten in den Zwangsflächen erfolgt, kann man die Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \,\delta v} durch die virtuellen Verschiebungen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \,\delta x} ersetzen und es ergibt sich die übliche Form des d´Alembert Prinzips:
Die physikalisch ausgezeichnete Bewegung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle t\mapsto x(t)} verläuft so, dass zu jedem Zeitpunkt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle t} die Gleichung
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \left(M\ddot x(t) - F(t,x(t),\dot x(t))\right) \delta x = 0 }
für alle Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \delta x\in \mathbb{R}^{3n}} mit
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \partial_2 C(t,x(t)) \delta x = 0 }
erfüllt ist. Die Lagrangegleichungen 1. Art folgen wie oben:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle M\ddot x(t) - F(t,x(t),\dot x(t)) = \partial_2 C(t,x(t))^T\,\lambda(t)}
mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \lambda(t)\in\mathbb{R}^z} .
Literatur
- Georg Hamel: Theoretische Mechanik. Springer-Verlag, Berlin 1949.
- Werner Schiehlen: Technische Dynamik. Teubner Studienbücher, Stuttgart 1986.
- Cornelius Lanczos: The Variational Principles of Mechanics. Dover.
- Gauss Werke Bd. 5, Über ein neues allgemeines Grundgesetz der Mechanik, Journal für Reine und Angewandte Mathematik Bd. 4, 1829