Jacobi-Verfahren

aus Wikipedia, der freien Enzyklopädie
(Weitergeleitet von Gesamtschrittverfahren)

In der numerischen Mathematik ist das Jacobi-Verfahren, auch Gesamtschrittverfahren genannt, ein Algorithmus zur näherungsweisen Lösung von linearen Gleichungssystemen. Es ist, wie das Gauß-Seidel-Verfahren und das SOR-Verfahren, ein spezielles Splitting-Verfahren. Benannt ist es nach Carl Gustav Jacob Jacobi.

Entwickelt wurde das Verfahren, da das Gaußsche Eliminationsverfahren zwar eine exakte Lösungsvorschrift darstellt, sich jedoch für Rechenfehler sehr anfällig zeigt. Eine iterative Vorgehensweise hat diesen Nachteil typischerweise nicht.

Beschreibung des Verfahrens

Gegeben ist ein lineares Gleichungssystem mit Variablen und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n} Gleichungen.

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \begin{matrix} a_{11}\cdot x_1+\dotsb+a_{1n}\cdot x_n&=&b_1\\ a_{21}\cdot x_1+\dotsb+a_{2n}\cdot x_n&=&b_2\\ &\vdots&\\ a_{n1}\cdot x_1+\dotsb+a_{nn}\cdot x_n&=&b_n\\ \end{matrix} }

Mit dem Matrix-Vektor-Produkt kann das lineare Gleichungssystem auch als Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A \cdot x = b} geschrieben werden, wobei die Matrix Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A} die Koeffizientenmatrix, der Ergebnisvektor und der gesuchte Vektor der Unbekannten ist. Die ausführliche Schreibweise als Matrix und Vektoren mit den einzelnen Elementen wird üblicherweise wie folgt notiert:

Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle {\begin{pmatrix}a_{11}&a_{12}&\cdots &a_{1n}\\a_{21}&a_{22}&\cdots &a_{2n}\\\vdots &\vdots &\ddots &\vdots \\a_{n1}&a_{n2}&\cdots &a_{nn}\\\end{pmatrix}}{\begin{pmatrix}x_{1}\\x_{2}\\\vdots \\x_{n}\end{pmatrix}}={\begin{pmatrix}b_{1}\\b_{2}\\\vdots \\b_{n}\end{pmatrix}}}

Um dieses zu lösen, wird die Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle i} -te Gleichung nach der Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle i} -ten Variablen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x_i} aufgelöst,

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x_i^{(m+1)}:=\frac1{a_{ii}}\left(b_i-\sum_{j\not=i} a_{ij}\cdot x_j^{(m)}\right), \, i=1,\dotsc,n}

und diese Ersetzung, ausgehend von einem Startvektor , iterativ wiederholt. Als Bedingung für die Durchführbarkeit ergibt sich, dass die Diagonalelemente Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a_{ii}} von Null verschieden sein müssen. Da die Berechnung einer Komponente der nächsten Näherung unabhängig von den anderen Komponenten ist, ist das Verfahren, im Gegensatz zum Gauß-Seidel-Verfahren, zur Nutzung auf Parallelrechnern geeignet.

Als Algorithmus in Pseudocode ergibt sich:

Gegeben Startvektor Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x^\text{alt}}

für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle m=1,\dotsc}
 bis Erfüllung eines Abbruchkriteriums
  Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x=b}

  für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle i=1}
 bis 
       für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle j=1}
 bis Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n}

         falls Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle j \not= i}

            Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x_i=x_i-a_{ij}x_j^\text{alt}}
;
       ende
       ;
  ende
  Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x^\text{alt}=x;}

ende

Dabei wurde die willkürliche Erstbelegung des Variablenvektors als Eingangsgrößen des Algorithmus angenommen, die Näherungslösung ist die vektorielle Rückgabegröße.

Bei dünnbesetzten Matrizen reduziert sich der Aufwand des Verfahrens pro Iteration deutlich.

Beschreibung in Matrixschreibweise

Die Matrix Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A} des linearen Gleichungssystems wird hierzu in eine Diagonalmatrix Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle D} , eine strikte untere Dreiecksmatrix Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle L } und eine strikte obere Dreiecksmatrix Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle U} zerlegt, so dass gilt:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A = D + (L + U)}

oder in ausführlicher Schreibweise mit den einzelnen Elementen der Matrizen wie folgt:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n}\\ a_{21} & a_{22} & \cdots & a_{2n}\\ \vdots & \vdots & \ddots & \vdots\\ a_{n1} & a_{n2} & \cdots & a_{nn}\\ \end{pmatrix} = \begin{pmatrix} a_{11} & 0 & \cdots & 0\\ 0 & a_{22} & \cdots & 0\\ \vdots & \vdots & \ddots & \vdots\\ 0 & 0 & \cdots & a_{nn}\\ \end{pmatrix} + \begin{pmatrix} 0 & a_{12} & \cdots & a_{1n}\\ a_{21} & 0 & \cdots & a_{2n}\\ \vdots & \vdots & \ddots & \vdots\\ a_{n1} & a_{n2} & \cdots & 0\\ \end{pmatrix}}

Die obige komponentenweise Iterationsvorschrift lässt sich dann folgendermaßen für den kompletten Vektor darstellen:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x^{(m+1)} = D^{-1} \left( b - \left(L + U\right) x^{(m)} \right)} .

Üblich zur Einbettung als Präkonditionierer in andere iterative Verfahren wie Krylow-Unterraum-Verfahren schreibt man den Präkonditionierer als Matrix Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle M} , wobei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle M} eine Approximation an Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A^{-1}} ist, zu der sich ein lineares Gleichungssysteme Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle M^{-1} \cdot u = v} günstig nach Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle u} lösen lässt. Es gilt für das Jacobi-Verfahren Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle M = D^{-1}} . Für das Residuum Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle r^{(m)} = b - A \cdot x^{(m)}} ist gerade die Näherungslösung. Die Beziehung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle M = D^{-1}} folgt unmittelbar:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x^{(m+1)} = D^{-1} \cdot \left( b - \left(L + D + U\right) \cdot x^{(m)} + D \cdot x^{(m)} \right) = D^{-1} \cdot r^{(m)} + x^{(m)}} ,
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x^{(m+1)} - x^{(m)} = D^{-1} \cdot r^{(m)}} .

Konvergenzuntersuchung

Die Konvergenz wird wie bei allen Splitting-Verfahren mittels des banachschen Fixpunktsatzes untersucht. Das Verfahren konvergiert also, wenn der Spektralradius der Iterationsmatrix Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle D^{-1}(D-A)} kleiner als eins ist. Insbesondere ergibt sich dies, wenn die Systemmatrix Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A} strikt diagonaldominant oder allgemeiner irreduzibel diagonaldominant ist.

Erweiterung auf nichtlineare Gleichungssysteme

Die Idee des Jacobi-Verfahrens lässt sich auf nichtlineare Gleichungssysteme Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f(x)=g} mit einer mehrdimensionalen nichtlinearen Funktion Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f} erweitern. Wie im linearen Fall wird im Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle i} -ten Schritt die Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle i} -te Gleichung bezüglich der Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle i} -ten Variablen gelöst, wobei für die anderen Variablen der bisherige Näherungswert genommen wird:

Für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle k=1, \dotsc} bis Erfüllung eines Abbruchkriteriums
Für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle i=1,\dotsc,n} :
Löse Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f_i(x_1^k,\dotsc, x^k_{i-1},x_i^{k+1},x_{i+1}^k,\dotsc,x_n^k) = g_i} nach Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x_i^{k+1}} auf.

Hierbei ist das Lösen in der Regel als die Anwendung eines weiteren iterativen Verfahrens zur Lösung nichtlinearer Gleichungen zu verstehen. Um dieses Verfahren vom Jacobi-Verfahren für lineare Gleichungssysteme zu unterscheiden, wird häufig vom Jacobi-Prozess gesprochen. Die Konvergenz des Prozesses folgt aus dem Banachschen Fixpunktsatz wieder als linear.

Literatur

  • A. Meister: Numerik linearer Gleichungssysteme, 2. Auflage, Vieweg 2005, ISBN 3528131357
  • R. Barrett et al.: Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods, 2nd Edition, SIAM Philadelphia, 1994
  • Plato, Robert: Numerische Mathematik Kompakt. Vieweg, 2004, ISBN 3-528-13153-5, S. 262.
  • W. C. Rheinboldt: Methods for Solving Systems of Nonlinear Equations, 2. Auflage, SIAM, 1998, ISBN 089871415X

Weblinks