Kantengewichteter Graph
Ein kantengewichteter Graph, kurz gewichteter Graph, ist in der Graphentheorie ein Graph, in dem jeder Kante eine reelle Zahl als Kantengewicht zugeordnet ist. Kantengewichtete Graphen können gerichtet oder ungerichtet sein. Ein Graph, dessen Knoten gewichtet sind, heißt knotengewichteter Graph.
Gewichtsfunktionen
Kantengewichte sind im Allgemeinen durch eine Kantengewichtsfunktion gegeben. Eine solche Gewichtsfunktion ist eine Abbildung der Form
- ,
die jeder Kante eine reelle Zahl als Gewicht zuordnet. Das Kantengewicht einer Kante Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle e \in E} wird dann mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle d(e)} oder bezeichnet.
Metrischer Graph
Ein vollständiger kantengewichteter Graph heißt metrisch, falls für alle Knoten Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a,b,c} des Graphen
gilt. Das heißt, der Weg von über Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle b} nach Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle c} darf nicht kostengünstiger sein als der direkte Weg von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a} nach Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle c} .[1] Ein Beispiel für metrische Graphen sind Distanzgraphen.
Anwendungen
Für viele graphentheoretische Probleme benötigt man zusätzliche Parameter, zum Beispiel eine Kostenfunktion für die Bestimmung kürzester Pfade oder eine Kapazitätsfunktion zur Bestimmung maximaler Flüsse. Eine Probleminstanz wird in einem solchen Fall oft durch ein Tupel der Form Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (G,d)} beschrieben, welches neben dem Graph die gewünschte Gewichtsfunktion beinhaltet.
Siehe auch
Einzelnachweise
- ↑ Noltemeier, Hartmut: Graphentheoretische Konzepte und Algorithmen. 3. Auflage. Vieweg+Teubner Verlag, Wiesbaden 2012, ISBN 978-3-8348-1849-2, S. 74 f.