Proportionale Fehlerreduktionsmaße

aus Wikipedia, der freien Enzyklopädie
(Weitergeleitet von Goodman und Kruskals γ)

Proportionale Fehlerreduktionsmaße (proportionale Fehlerreduktion (PFR) englisch proportionate reduction of error, kurz: PRE, daher auch PRE-Maße) geben indirekt die Stärke des Zusammenhangs zwischen zwei Variablen und an.

Definition

Proportionale Fehlerreduktionsmaße werden definiert als

,

wobei der Fehler bei der Vorhersage der abhängigen Variablen ohne Kenntnis des Zusammenhangs und der Fehler bei der Vorhersage der abhängigen Variablen mit Kenntnis des Zusammenhangs mit ist.

Da gilt (weil man annimmt, dass die Kenntnis des Zusammenhangs korrekt ist; der Vorhersagefehler nimmt also bei Verwendung der Kenntnis ab), folgt . Ein Wert von Eins bedeutet, dass bei Kenntnis der unabhängigen Variable der Wert der abhängigen Variable perfekt vorhergesagt werden kann. Ein Wert von Null bedeutet, dass die Kenntnis der unabhängigen Variablen keine Verbesserung in der Vorhersage der abhängigen Variable ergibt.

Der Vorteil ist, dass damit alle proportionalen Fehlerreduktionsmaße in gleicher Weise unabhängig vom Skalenniveau interpretiert werden können. Als Vergleichsmaßstab kann daher das Bestimmtheitsmaß dienen, da es ein proportionales Fehlerreduktionsmaß ist, oder folgende Daumenregel:[1]

  • : Keine Beziehung,
  • : Schwache Beziehung,
  • : Mittlere Beziehung und
  • : Starke Beziehung.

Der Nachteil ist, dass

  • die Richtung des Zusammenhangs nicht berücksichtigt werden kann, da Richtungen nur bei ordinalen oder metrischen Variablen angegeben werden können und
  • die Größe der Fehlerreduktion davon abhängt, wie die Vorhersage unter Kenntnis des Zusammenhangs gemacht wird. Ein kleiner Wert des proportionalen Fehlerreduktionmaßes bedeutet nicht, dass es keinen Zusammenhang zwischen den Variablen gibt.

Da eine Variable abhängig und die andere unabhängig ist, unterscheidet man zwischen symmetrischen und asymmetrischen proportionalen Fehlerreduktionsmaßen:

Skalenniveau der Maß
unabhängigen Variable X abhängigen Variable Y Name Bemerkung
nominal nominal Goodman und Kruskals [2] Es gibt ein symmetrisches und ein asymmetrisches Maß.
nominal nominal Goodman und Kruskals [2] Es gibt ein symmetrisches und ein asymmetrisches Maß.
nominal nominal Unsicherheitskoeffizient oder Theils U[3] Es gibt ein symmetrisches und ein asymmetrisches Maß.
ordinal ordinal Goodman und Kruskals [2] Es gibt nur ein symmetrisches Maß.
nominal metrisch Es gibt nur ein asymmetrisches Maß.
metrisch metrisch Bestimmtheitsmaß Es gibt nur ein symmetrisches Maß.

Bestimmtheitsmaß

Für die Vorhersage unter Unkenntnis des Zusammenhangs zwischen zwei metrischen Variablen und dürfen nur Werte der abhängigen Variablen benutzt werden. Der einfachste Ansatz ist , also die Annahme eines konstanten Wertes. Dieser Wert soll die Optimalitätseigenschaft erfüllen, also die Summe der Abweichungsquadrate minimieren. Daraus folgt, dass das arithmetische Mittel ist, also . Daher ist der Vorhersagefehler unter Unkenntnis des Zusammenhangs

.

Für die Vorhersage unter Kenntnis des Zusammenhangs nutzen wir die lineare Regression aus:

.

Das Bestimmtheitsmaß ist dann ein proportionales Fehlerreduktionsmaß, da gilt

Werden die Rollen der abhängigen und unabhängigen Variable vertauscht, so ergibt sich der gleiche Wert für . Daher gibt es nur ein symmetrisches Maß.

Goodman und Kruskals λ und τ

Datei:LambdaTau1.JPG
Berechnung von Goodman und Kruskals und für die Variablen „Subjektive Schichteinstufung des Befragten“ und „Wahlabsicht in der Bundestagswahl“ der ALLBUS Daten 2006.

Goodman und Kruskals λ

Die Vorhersage unter Unkenntnis des Zusammenhangs ist die Modalkategorie der abhängigen Variable und der Vorhersagefehler

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle E_1 = 1- \frac{h_M}{n}}

mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle h_M} die absolute Häufigkeit in der Modalkategorie und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n} die Anzahl der Beobachtungen.

Die Vorhersage unter Kenntnis des Zusammenhangs ist die Modalkategorie der abhängigen Variable in Abhängigkeit von den Kategorien der unabhängigen Variablen und der Vorhersagefehler ist

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle E_2 = \sum_j \frac{h_{\bullet,j}}{n} \left(1-\frac{h_{M,j}}{h_{\bullet,j}}\right)}

mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle h_{\bullet,j}} die absolute Häufigkeit für die jeweilige Kategorie der unabhängigen Variablen und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle h_{M,j}} die absolute Häufigkeit der Modalkategorie in Abhängigkeit von den Kategorien der unabhängigen Variablen.

Beispiel

Im Beispiel rechts ergibt sich für die abhängige Variable „Wahlabsicht Bundestagswahl“ bei Unkenntnis des Zusammenhangs als der Vorhersagewert „CDU/CSU“ und damit eine Fehlervorhersage Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle E_1 = 1 - 770/2660 = 0{,}711} .

Je nach Ausprägung der Variablen „Subjektive Schichteinstufung“ ergibt sich für die abhängige Variable „Wahlabsicht Bundestagswahl“ der Vorhersagewert „CDU/CSU“ (Kategorie: Mittelschicht, Obere Mittelschicht/Oberschicht), „SPD“ (Kategorie: Arbeiterschicht) oder „Andere Partei/Nichtwähler“ (alle anderen Kategorien). Der Vorhersagefehler Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle {E_2 = 91/2660 \cdot (1-27/91)+953/2660 \cdot (1-264/953)+\dots +21/2660 \cdot (1-6/21)= 0{,}689}} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \lambda = 1 - 0{,}689/0{,}711=0{,}031} .

Das heißt, im vorliegenden Beispiel kann der Fehler bei der Vorhersage der Wahlabsicht der Bundestagswahl des Befragten um 3,1 % reduziert werden, wenn man seine eigene subjektive Schichteinstufung kennt.

Goodman und Kruskals τ

Bei Goodman und Kruskals Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \tau} wird als Vorhersagewert statt der Modalkategorie ein zufälliger gezogener Wert aus der Verteilung von Y angenommen, d. h. mit Wahrscheinlichkeit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle h_{1,\bullet}/n} wird Kategorie 1 gezogen, mit Wahrscheinlichkeit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle h_{2,\bullet}/n} wird Kategorie 2 gezogen und so weiter. Der Vorhersagefehler ergibt sich dann als

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle E_1 = \sum_k \frac{h_{k,\bullet}}{n} \left(1-\frac{h_{k,\bullet}}{n}\right)}

mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle h_{k,\bullet}} die absolute Häufigkeit der Kategorie Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle k} der abhängigen Variablen. Analog ergibt sich der Vorhersagefehler Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle E_2} , nur das jetzt die Vorhersage entsprechend für jede Kategorie der unabhängigen Variablen gemacht wird und der Vorhersagefehler Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle E_2} ergibt sich als Summe der gewichteten Vorhersagefehler in jeder Kategorie der unabhängigen Variablen.

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle E_2 = \sum_j \frac{h_{\bullet,j}}{n} \left(\sum_k \frac{h_{k,j}}{h_{\bullet,j}} \left(1-\frac{h_{k,j}}{h_{\bullet,j}}\right)\right)}

mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle h_{k,j}} die absolute Häufigkeit für das gemeinsame Auftreten der Kategorien Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle i} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle j} .

Symmetrische Maße

Für Goodman und Kruskals Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \lambda} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \tau} können die Vorhersagefehler

  • Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle E_1^Y} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle E_2^Y} , wenn Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle Y} die abhängige Variable ist, und
  • Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle E_1^X} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle E_2^X} , wenn Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X} die abhängige Variable ist,

berechnet werden. Die symmetrischen Maße für Goodman und Kruskals Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \lambda} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \tau} ergeben sich dann als

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \frac{(E_1^X-E_2^X)+(E_1^Y-E_2^Y)}{E_1^X+E_1^Y}} .

Unsicherheitskoeffizient

Entropie

Der Unsicherheitskoeffizient misst die Unsicherheit der Information mit Hilfe der Entropie. Wenn Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f_k} die relative Häufigkeit des Auftretens der Kategorie Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle k} ist, dann ist die Entropie oder Unsicherheit definiert als

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle U = -\sum_k f_k\,\log(f_k).}

Die Unsicherheit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle U} ist Null, wenn für alle möglichen Kategorien bis auf eine Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f_k=0} ist. Die Vorhersage, welchen Kategorienwert eine Variable annimmt, ist dann trivial. Ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f_k=1/k} (Gleichverteilung), dann ist die Unsicherheit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle U=\log(k)} und auch maximal.

Asymmetrischer Unsicherheitskoeffizient

Das Fehlermaß unter Unkenntnis des Zusammenhangs ist daher die Unsicherheit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle U_Y} für die abhängige Variable

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle E_1 = -\sum_k \frac{h_{k,\bullet}}{n} \log\left(\frac{h_{k,\bullet}}{n}\right) = U_Y.}

Das Fehlermaß unter Kenntnis des Zusammenhangs ist die gewichtete Summe der Unsicherheit für jede Kategorie der abhängigen Variablen

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle E_2 = \sum_j \frac{h_{\bullet,j}}{n} \underbrace{\left[-\sum_k \frac{h_{k,j}}{h_{\bullet,j}} \log\left(\frac{h_{k,j}}{h_{\bullet,j}}\right)\right]}_{\begin{matrix}\text{Unsicherheit in Kategorie }j \\ \text{der unabhängigen Variable}\end{matrix}}.}

Dieser Ausdruck lässt auch schreiben als

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle E_2 = U_{XY}-U_X = \left[-\sum_{j,k} \frac{h_{k,j}}{n} \log\left(\frac{h_{k,j}}{n}\right)\right]-\left[-\sum_j\frac{h_{\bullet,j}}{n} \log\left(\frac{h_{\bullet,j}}{n}\right)\right]}

mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle U_{XY}} die Unsicherheit basierend auf der gemeinsamen Verteilung von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle Y} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle U_X} die Unsicherheit der unabhängigen Variable Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X} .

Der Unsicherheitskoeffizient ergibt sich dann als

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle U_\text{asym.}=\frac{E_1-E_2}{E_1} = \frac{U_X+U_Y-U_{XY}}{U_Y}.}

Symmetrischer Unsicherheitskoeffizient

Für den Unsicherheitskoeffizient können die Vorhersagefehler

  • Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle E_1^Y} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle E_2^Y} , wenn Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle Y} die abhängige Variable ist, und
  • Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle E_1^X} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle E_2^X} , wenn Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X} die abhängige Variable ist,

berechnet werden. Der symmetrische Unsicherheitskoeffizient ergibt sich, wie bei Goodman and Kruskals Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \lambda} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \tau} , als

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle U_\text{sym.} = \frac{(E_1^X-E_2^X)+(E_1^Y-E_2^Y)}{E_1^X+E_1^Y} = \frac{2 (U_X+U_Y-U_{XY})}{U_X+U_Y}} .

Goodman und Kruskals γ

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle C} sei die Zahl konkordanten Paare (Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x_i<x_j} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle y_i<y_j} ) und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle D} die Zahl diskordanten Paare (Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x_i<x_j} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle y_i>y_j} ). Wenn wir keine gemeinsamen Rangzahlen (Ties) haben und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n} die Anzahl der Beobachtungen ist, dann gilt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle C+D=n(n-1)/2} .

Unter Unkenntnis des Zusammenhangs können wir keine Aussage darüber machen, ob ein Paar konkordant oder diskordant ist. Daher sagen wir Wahrscheinlichkeit 0,5 ein konkordantes bzw. diskordantes Paar vorher. Der Gesamtfehler für alle möglichen Paare ergibt sich als

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle E_1 = \frac{C+D}{2}.}

Unter Kenntnis des Zusammenhangs wird immer Konkordanz vorhergesagt, falls Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle C\geq D} , oder immer Diskordanz, wenn Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle C<D} . Der Fehler ist

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle E_2 = \min(C,D) = \left\{\begin{matrix} D,& \text{ falls } C\geq D\\ C, & \text{ falls } C<D\end{matrix} \right.}

und es folgt

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \frac{E_1-E_2}{E_1}=\frac{\frac{C+D}{2}-\min(C,D)}{\frac{C+D}{2}}=\frac{|C-D|}{C+D}=|\gamma|.}

Der Betrag von Goodman and Kruskals Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \gamma} ist damit ein symmetrisches proportionales Fehlerreduktionsmaß.

η2

Datei:Eta2.jpg
Berechnung von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \eta} für die Variablen „Nettoeinkommen des Befragten“ (abhängig) und „Subjektive Schichteinstufung des Befragten“ (unabhängig) der ALLBUS Daten 2006.

Wie bei dem Bestimmtheitsmaß ist der Vorhersagewert für die abhängige metrische Variable unter Unkenntnis des Zusammenhangs Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \bar{y}} und der Vorhersagefehler

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle E_1 = \sum_{i=1}^n (y_i - \bar{y})^2} .

Bei Kenntnis, zu welcher der Gruppen der nominale oder ordinale unabhängigen Variable die Beobachtung gehört, ist der Vorhersagewert gerade der Gruppenmittelwert Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \bar{y}_k} . Der Vorhersagefehler ergibt sich als

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle E_2 = \sum_k \sum_{i=1}^n (y_i - \bar{y}_k)^2 \delta_{ik}}

mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \delta_{ik} = \left\{\begin{matrix} 1,& \text{ falls } i=k\\ 0 & \text{ sonst } \end{matrix} \right.} , wenn die Beobachtung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle i} zur Gruppe Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle k} gehört und sonst Null. Damit ergibt sich

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \eta^2 = 1-\frac{E_2}{E_1} = 1- \frac{\sum_k \sum_{i=1}^n (y_i - \bar{y}_k)^2 \delta_{ik}}{\sum_{i=1}^n (y_i - \bar{y})^2}} .

Die Rollen der abhängigen und unabhängigen Variablen können nicht vertauscht werden, da sie unterschiedliche Skalenniveaus haben. Deswegen gibt es nur ein (asymmetrisches) Maß.

In Cohen (1988)[1] wird als Daumenregel angegeben:

  • Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \eta^2 < 0{,}01} kein Zusammenhang,
  • Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 0{,}01 \leq \eta^2 < 0{,}06} geringer Zusammenhang,
  • Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 0{,}06 \leq \eta^2 < 0{,}14} mittlerer Zusammenhang und
  • Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 0{,}14 \leq \eta^2} starker Zusammenhang.

Beispiel

In dem Beispiel kann der Fehler bei der Vorhersage des Nettoeinkommens bei Kenntnis der Schichteinstufung um Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 0{,}306^2 = 0{,}094} , also knapp 10 %, reduziert werden. Das zweite Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \eta} ergibt sich, wenn man die Rolle der Variablen vertauscht, was aber hier unsinnig ist. Daher muss dieser Wert ignoriert werden.

Literatur

  • Y.M.M. Bishop, S.E. Feinberg, P.W. Holland (1975). Discrete Multivariate Analysis: Theory and Practice. Cambridge, MA: MIT Press.
  • L.C. Freemann (1986). Order-based Statistics and Monotonicity: A Family of Ordinal Measures of Association. Journal of Mathematical Sociology, 12(1), S. 49–68
  • J. Bortz (2005). Statistik für Human- und Sozialwissenschaftler (6. Auflage), Springer Verlag.
  • B. Rönz (2001). Skript "Computergestützte Statistik II", Humboldt-Universität zu Berlin, Lehrstuhl für Statistik.

Einzelnachweise

  1. a b J. Cohen (1988). Statistical Power Analysis for Behavioral Science. Erlbaum, Hilsdale.
  2. a b c L.A. Goodman, W.H. Kruskal (1954). Measures of association for cross-classification. Journal of the American Statistical Association, 49, S. 732–764.
  3. H. Theil (1972), Statistical Decomposition Analysis, Amsterdam: North-Holland Publishing Company (diskutiert den Unsicherheitskoeffizient).