Invariante (Mathematik)

aus Wikipedia, der freien Enzyklopädie
(Weitergeleitet von Invariantentheorie)

In der Mathematik versteht man unter einer Invariante eine mit einem Objekt assoziierte Größe, die sich bei einer jeweils passenden Klasse von Modifikationen des Objektes nicht ändert. Invarianten sind ein wichtiges Hilfsmittel bei Klassifikationsproblemen: Objekte mit unterschiedlichen Invarianten sind wesentlich verschieden; gilt auch die Umkehrung, d. h., sind Objekte mit gleichen Invarianten im Wesentlichen identisch, so spricht man von einem vollständigen Satz von Invarianten oder von trennenden Invarianten.

Einführendes Beispiel

Die betrachteten Objekte sind Paare Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (x,y)} reeller Zahlen, erlaubte Modifikationen bestehen darin, zu beiden Zahlen dieselbe beliebig gewählte Zahl zu addieren:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (x,y) \longmapsto (x',y')=(x+z,y+z)} .

Eine Invariante ist in diesem Fall die Differenz Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x-y} der beiden Zahlen:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x' - y' = (x+z) - (y+z) = x - y.}

Eine Interpretation dieses Beispiels könnte sein: Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x} und sind die Anfangs- und Endpunkt einer Stange, gemessen von einem festen Punkt in der Verlängerung der Stange. Die Modifikationen entsprechen einer Verschiebung der Stange um Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle z} , die Invariante ist die Länge der Stange.

In diesem Beispiel genügt bereits diese eine Invariante für eine vollständige Klassifikation: Zwei Zahlenpaare Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (x_1,y_1)} und gehen genau dann auseinander hervor, das heißt, es gibt ein , so dass

und

wenn die Längen übereinstimmen:

Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle x_{1}-y_{1}=x_{2}-y_{2}.}

(Beweis: Setze , dann ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle y_1+z=x_2-(x_1-y_1)=x_2-(x_2-y_2)=y_2.} )

Weitere Beispiele

  • Die Dimension eines Vektorraumes ist eine Isomorphie-Invariante, d. h., sind und isomorphe Vektorräume, so stimmen ihre Dimensionen überein. Es gilt auch die Umkehrung: Zwei Vektorräume gleicher Dimension (aufgefasst als Kardinalzahl) über einem gemeinsamen Grundkörper sind isomorph.
  • Die Determinante einer Matrix ist eine Ähnlichkeitsinvariante, d. h., sind Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle B} zwei Matrizen, für die es eine invertierbare Matrix Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle S} gibt, so dass Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle B=SAS^{-1}} gilt, so haben und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle B} dieselbe Determinante. Hier gilt die Umkehrung nicht, beispielsweise hat jede Drehung die Determinante 1.
  • Die Frobenius-Normalform bzw. die Invariantenteiler der charakteristischen Matrix Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle xI-A} , wobei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle I} die Einheitsmatrix der gleichen Dimension ist wie A, dagegen ist sogar eine trennende Invariante der Ähnlichkeitsoperation, d. h., zwei Matrizen sind genau dann ähnlich zueinander, wenn sie die gleiche Frobenius-Normalform haben.
  • Bettizahlen und Euler-Charakteristik sind topologische Invarianten, d. h. invariant unter Homöomorphismen.

Invarianten unter Operationen

Bei Gruppenoperationen spricht man ebenfalls von Invarianten: Ist eine Punktmenge mit einer Operation der Gruppe Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle G} , so heißen die Punkte Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x \in X} , die invariant bleiben,

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \forall g \in G \colon gx=x} ,

Fixpunkte oder die Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle G} -invarianten Punkte.

Allgemeiner ist jede Bahn durch einen Punkt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x \in X} , die durch die Gruppenoperation entsteht,

,

invariant unter der Gruppenoperation.

Weiterführende Themen

In der theoretischen Physik stellt das Noether-Theorem einen Zusammenhang zwischen Symmetrien der Wirkung und Invarianten der Zeitentwicklung her. Diese nennt man in der Physik Erhaltungsgrößen (Beispiele: Energie, Impuls, Drehimpuls). „Relativistische Invarianz“, d. h. Invarianz gegen Lorentztransformationen, besitzen viele (per Postulat: alle) physikalische Theorien, darunter an prominentester Stelle die Maxwellsche Elektrodynamik und natürlich die Relativitätstheorien Albert Einsteins. Im Gegensatz zur Mathematik steht aber letzten Endes nicht Axiomatik dahinter, sondern wenige, besonders aussagekräftige Experimente, z. B. das Michelson-Morley-Experiment zur Konstanz der Lichtgeschwindigkeit.

Siehe auch

Literatur

Weblinks